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Abstract 

Background  Brain metastases (BrM) arising from breast cancer (BC) are an increasing consequence of advanced 
disease, with up to half of patients with metastatic HER2 + or triple negative BC experiencing central nervous system 
(CNS) recurrence. The genomic alterations driving CNS recurrence, along with contributions of the immune microen-
vironment, particularly by intrinsic subtype, remain unclear.

Methods  We characterized the genomic and immune landscape of BCBrM from a cohort of 42 patients by sequenc-
ing whole-exome DNA (WES) and total RNA libraries from frozen and FFPE BrM and FFPE extracranial tumors (ECT). 
Analyses included PAM50 intrinsic subtypes, somatic mutations, copy number variations (CNV), pathway alterations, 
immune cell type deconvolution, and associations with clinical outcomes

Results  Intrinsic subtype calls were concordant for the majority of BrM-ECT pairs (60%). Across all BrM and ECT 
samples, the most common somatic gene mutation was TP53 (64%, 30/47). For patients with matched FFPE BrM-
FFPE ECT, alterations tended to be conserved across tissue type, although differential somatic mutations and CNV 
in specific genes were observed. Several genomic pathways were differentially expressed between patient-matched 
BrM-ECT; MYC targets, DNA damage repair, cholesterol homeostasis, and oxidative phosphorylation were higher 
in BrM, while immune-related pathways were lower in BrM. Deconvolution of immune populations between BrM-ECT 
demonstrated activated dendritic cell populations were higher in BrM compared to ECT. Increased expression of sev-
eral oncogenic preselected pathways in BrM were associated with inferior survival, including DNA damage repair, 
inflammatory response, and oxidative phosphorylation

Conclusions  Collectively, this study illustrates that while some genomic alterations are shared between BrM and ECT, 
there are also unique aspects of BrM including somatic mutations, CNV, pathway alterations, and immune landscape. 
A deeper understanding of differences inherent to BrM will contribute to the development of BrM-tailored therapeu-
tic strategies. Additional analyses are warranted in larger cohorts, particularly with additional matched BrM-ECT.
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Introduction
As patients are living longer with metastatic breast can-
cer (MBC), the incidence of brain metastases (BrM) is 
increasing over time [3], with a recent meta-analysis cit-
ing an incidence of 31% for patients with HER2-positive 
(HER2 +) MBC, 32% for patients with triple negative 
MBC, and 15% for patients with hormone receptor (HR)-
positive (HR +), HER2-negative (HER2−) MBC [41]. In 
fact, up to half of patients with metastatic HER2 + or tri-
ple negative breast cancer (TNBC) experience a central 
nervous system (CNS) recurrence [47, 64]. Despite recent 
advances in targeted therapies with increased efficacy in 
CNS disease [12], the prognosis of symptomatic BrM is 
poor, with shorter overall survival among MBC patients 
compared to those without BrM [9, 36]. As a result, there 
is need to better understand the biology and immune 
landscape surrounding BrM in MBC to identify potential 
therapeutic targets.

Several studies have performed sequencing of primary 
and BrM tissue from melanoma [21], lung cancer [69], 
breast cancer [7, 62, 65, 66, 75], and other solid tumor 
malignancies [7]. These studies demonstrate that BrM 
differ in biologically important ways compared to pri-
mary tumors and extracranial metastatic tissue, includ-
ing different mutations and/or copy number variations 
(CNV) in clinically targetable genes such as HER2 [7, 62, 
66], BRAF [75], PI3K/Akt [7], CDK [66], and ATM [75]. 
A comprehensive genomic analysis (including mutational 
and CNV analyses, neoantigen prediction, and tran-
scriptomic analysis) based on whole-exome and RNA 
sequencing of TNBC BrM and primary tumors showed 
BrM harbored higher mutational burden and single 
nucleotide variants (SNV)-derived neoantigen expression 
with reduced immune gene signature expression relative 
to primary TNBC [65]. These findings support the explo-
ration of immunomodulatory treatments, such as vaccine 
development, in TNBC BrM.

While advances in the field of BCBrM are being made, 
BrM remain incurable such that continued exploration of 
the immunobiology of this disease state to uncover future 
therapies is warranted. Thus, in this study, we provide a 
comprehensive description of the genomic and immune 
landscape of BrM across all BC inferred intrinsic sub-
types, with both DNA and (total) RNA from frozen and 
FFPE BrM specimens, including some matched ECT 
and/or primary tumor to contrast with BrM. We also 
briefly compare results from frozen and FFPE tissue from 
the same specimens to differentiate processing methods 
from true biology and explore some comparisons among 
clinical subtypes. Our goal was to identify features of 
BCBrM that may be shared with matched ECT, as well 
as those that are unique to BrM themselves, within and 
across subtypes, to further dissect the immunobiology of 

BrM to reveal clinically relevant targets that may inform 
future treatment strategies.

Materials and methods
Patient cohort
The cohort includes 42 patients with MBC who under-
went craniotomy at Duke University Hospital for stand-
ard of care BCBrM resection between 1988 and 2019 
who also had available frozen and/or FFPE BCBrM tissue 
for sequencing (Table 1, Additional file 1: Supplementary 
Fig. S1). All intracranial tissues (patients (n) = 39, samples 
(m) = 40) and any patient-matched fresh-frozen blood 
DNA (patients (n) = 25, samples (m) = 26) were obtained 
from the Duke Brain Tumor Center Biorepository (BTBR, 
IRB Pro00007434) at Duke University. Patient-matched 
whole blood DNA samples were collected according to 
best practices to account for germline variation in tumor 
samples to improve somatic variant calling. ECT (n = 12, 
m = 13) were FFPE tissue blocks pulled from the surgi-
cal pathology archives at Duke or outside hospitals. Col-
lection of tissue samples and clinical information was 
approved by the Duke University Institutional Review 
Board (Pro00104321). Patient clinical subtypes were 
annotated based on standard of care clinical biomarker 
testing results from brain lesions, if available; otherwise, 
the clinical subtype was based on testing from a patient’s 
ECT if available; otherwise, the subtype was based on the 
primary tumor.

Tissue sample preparation
H&E-stained slides were prepared from patient-derived, 
frozen and/or FFPE BCBrM tissues. Slides were reviewed 
by a pathologist, and blocks containing ≥ 50% viable 
tumor were chosen for sectioning for sequencing. Loose 
sections were collected from selected BCBrM and all 
available ECT blocks and used for nucleic acid extraction.

Total RNA sequencing
Extraction of RNA from frozen BCBrM was performed 
using the RNeasy® Plus Mini Kit (QIAGEN, CAT # 
74,134, Germantown, MD) and extraction of RNA from 
FFPE BCBrM and ECT tissues was performed using the 
RNeasy® FFPE Kit (QIAGEN, CAT # 73,504, German-
town, MD), both according to the manufacturer’s proto-
col. Extracted total RNA quality and concentration were 
assessed on a 2100 Bioanalyzer (Agilent Technologies) 
and Qubit 2.0 (ThermoFisher Scientific). RNA sequenc-
ing (RNAseq) libraries were prepared using Illumina 
Stranded Total RNA Prep with Ribo-Zero Plus kit (Illu-
mina, CAT # 20,040,529) and indexed using Illumina 
RNA UD Indexes Set A (Illumina, CAT # 20,040,553). 
All libraries were then pooled in equimolar ratio and 
sequenced on four lanes of an Illumina NovaSeq 6000 S4 
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flow cell, generating 150 bp PE reads. Sequence data was 
demultiplexed and fastq files were generated using Illu-
mina Bcl2Fastq conversion software.

Whole‑exome sequencing
Extraction of DNA from the isolated tissue was per-
formed using the Gentra® Puregene® Tissue Kit (QIA-
GEN, CAT # 158,066, Germantown, MD) and extraction 
of DNA from blood was performed using the Gentra® 
Puregene® Blood Kit (QIAGEN, CAT # 158,026, Ger-
mantown, MD), both according to the manufacturer’s 
protocols. Extracted DNA was quantified using Qubit 
2.0 (Thermo Fisher Scientific).  DNA-seq libraries were 
prepared for each sample using the Kapa Hyper Prep 
kit (Roche, Cat # KK8504) and indexed using IDT for 
Illumina DNA unique dual indexes (UDI) Set A. Final 
libraries were quality checked using 2100 Bioanalyzer 
(Agilent Technologies) and Qubit 2.0 (ThermoFisher Sci-
entific) and pooled into batches of 12 (pre-capture pool-
ing). Each pool of libraries was then hybridized with IDT 
xGen Exome Hybridization Panel V2 probes (IDT, CAT # 
10,005,152) to capture and pull down the portion of the 
DNA-seq library representing the human exome. Final 
captured libraries were amplified, pooled into one library, 
and sequenced using six lanes of an Illumina NovaSeq 

Table 1  Patient cohort overview

Patient cohort

Patient # (% of n = 42) 
or Median (IQR)

Race

 Asian 1 (2.4%)

 Black or African American 12 (28.6%)

 Caucasian 29 (69.0%)

Ethnicity

 Non-hispanic 41 (97.6%)

 Not reported/declined 1 (2.4%)

Sex

 Female 42 (100%)

 Male 0 (0%)

Status

 Alive/unknown 5 (11.9%)

 Deceased 37 (88.1%)

Median age

 At initial breast cancer diagnosis 48 (44.2, 54.5)

 At BrM surgery 53 (47.2, 61.0)

Clinical subtype

 HR + HER2− (hormone receptor +) 13 (31.0%)

 HER2 + (HER2 +) 18 (42.9%)

 HR + HER2 +  8 (19.0%)

 HR− HER2 +  10 (23.8%)

 HR + HER2eq1 1 (2.4%)

 HR− HER2− (triple negative) 7 (16.7%)

 Unknown 3 (7.1%)

Clinical subtype source

 BrM 25 (59.5%)

 Distant metastasis 7 (16.7%)

 Breast/LN 2 (4.8%)

 Unknown/NA 8 (19.0%)

Year of BrM surgery Surgery # (% of n = 43)2

 1988–1999 2 (4.7%)

 2000–2009 10 (23.3%)

 2010–2020 30 (72.1%)

Status of BrM at surgery Sample # (% of n = 40)3

 Newly diagnosed 32 (80.0%)

 Recurrent 6 (15.0%)

 Unknown 2 (5.0%)

Treatment status of BrM at surgery

 Treated 7 (17.5%)

 Not treated 31 (77.5%)

 Unknown 2 (5.0%)

Treatment before surgery of BrM

 Radiation therapy

 Yes 7 (17.5%)

 WBRT 3 (7.5%)

 SRS 3 (7.5%)

 WBRT + SRS 1 (2.5%)

 No 31 (77.5%)

Demographic, clinical subtype, and treatment history summary of the patient 
cohort

BrM: Brain Metastasis, ER: Estrogen Receptor, LN: Lymph Node, NA: Not available, 
PR: Progesterone Receptor, HER2: human epidermal growth factor receptor 2, 
HER2eq: HER2 equivocal, WBRT: Whole Brain Radiation Therapy, SRS: Stereotactic 
Radiosurgery, FFPE: Formalin-Fixed Paraffin-Embedded
1 The one HR + HER2eq patient was included with the HR + HER2− patients for 
most analyses
2 One patient had two asynchronous BrM resections roughly a year apart
3 Specimens were collected from 43 surgeries across 42 patients. Of the 43 
surgeries, three of the BrM specimens were not available for sequencing, 
resulting in 40 BrM specimens

Table 1  (continued)

Patient cohort

 Unknown 2 (5.0%)

Systemic therapy

 Yes 1 (2.5%)

 No 37 (92.5%)

 Unknown 2 (5.0%)

Prior surgery

 Yes 4 (10.0%)

 Subtotal resection 1 (2.5%)

 Gross total resection 1 (2.5%)

 Biopsy 1 (2.5%)

 Unspecified 1 (2.5%)

 No 34 (85.0%)

 Unknown 2 (5.0%)
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6000 S4 flow cell (batch one had two lanes and batch 
two had four lanes), generating 150 bp paired end reads. 
Sequence data was demultiplexed and fastq files were 
generated using Illumina Bcl2Fastq conversion software.

Bioinformatics and biostatistics considerations
Analysis of RNA sequencing data
RNAseq data were analyzed through the following steps. 
The quality of the raw sequencing reads was evaluated 
and reported using FastQC v0.11.9 [1] and MultiQC 
v1.10.1 [18]. Sequences with adapter contamination 
and low-quality sequences were cleaned using Trimmo-
matic v0.39 [6]. The quality of the remaining sequences 
was reevaluated to guarantee minimum adapter 
contamination.

The raw sequencing reads were aligned to the refer-
ence genome using the STAR aligner v2.7.8a [17]. The 
aligned reads were then mapped to annotated genomic 
features, including genes and exons, using STAR’s built-
in module. The human reference sequence (GRCh38.p13) 
and annotation GTF file (gencode.v38.primary_assembly.
annotation.gtf ) were obtained from GENCODE [29, 30]. 
Mapping quality was evaluated before any downstream 
analyses. The read level mapping quality was evaluated 
through STAR output, including the fraction of reads 
mapped to gene regions, ambiguous regions, non-feature 
regions or multiple loci. Likewise, the base level map-
ping quality was accessed through CollectRnaSeqMetrics 
from Picard Toolkits v2.23.8 [8].

Molecular inferred intrinsic subtypes (PAM50)
A molecular intrinsic subtype was inferred for each 
RNAseq sample using expression data from the PAM50 
50-gene panel [60]. The subtyping was performed using 
the R Bioconductor package genefu v2.30.0 [24], select-
ing the “pam50.robust” parameter set, and opting to 
rescale expression values by the quantile (q = 0.05), as 
recommended by the developer. In addition, we per-
formed Claudin-Low subtyping as implemented in the 
package genefu with the function “ClaudinLow” and the 
built-in training dataset [61]. Because we anticipated dif-
ferences in expression by sample type, samples were sub-
typed separately: frozen BrM (n = 30, m = 31), FFPE BrM 
(n = 33, m = 34), and FFPE ECT (n = 12, m = 13). To con-
firm that subtype calls were not highly dependent on the 
identity or number of samples included, we compared the 
calls to those from subtyping runs with all tumor samples 
(m = 78) and grouped by sample storage (frozen BrM 
m = 31 and FFPE m = 47). Sankey alluvial plots were used 
to visualize variation in subtype calls for a given patient 
across sample types and implemented in R with the pack-
age ggsankey v0.0.99999 (https://​github.​com/​david​sjobe​
rg/​ggsan​key). To represent a patient’s PAM50 inferred 

subtype, calls from frozen BrM RNA samples were pri-
oritized if available (n = 30), followed by calls from FFPE 
BrM (n = 7) or FFPE ECT samples (n = 2), in that order.

Analysis of whole‑exome sequencing data
Whole-exome sequencing (WES) data were pro-
cessed and analyzed with the following steps. First, raw 
sequences were mapped to the hg38 reference genome 
using the BWA-MEM v0.7.17 algorithm [44]. The refer-
ence genome was obtained from the publicly available 
GATK resource bundle v0 (Homo_sapiens_assembly38.
fasta; https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​
36003​58908​11-​Resou​rce-​bundle). Then, aligned BAM 
files were preprocessed using Picard v2.23.8 and GATK 
v4.2.2.0 [16, 52, 74] to remove duplicate reads and per-
form base recalibration.

Somatic variant calling was performed by first con-
structing a panel of normals (PON), in the variant call 
format (VCF), of common artifactual and germline vari-
ant sites using all patient-matched blood samples (GATK 
v4.2.2.0 Mutect2, GenomicsDBImport, CreateSomat-
icPanelOfNormals). Somatic variants were then called 
in all tumor samples using GATK v4.4.0.0 Mutect2 with 
default parameters and an additional flag (–f1r2-tar-gz) 
for collecting F1R2 counts as input for LearnReadOrien-
tationModel. Patient-matched blood samples (–input flag 
for normal BAM file and –normal-sample flag for speci-
fying the normal library name) were used in combina-
tion with the PON VCF (–panel-of-normals flag) to call 
somatic variants in tumor samples. Initial callsets were 
prepared for filtering by first estimating the fraction of 
reads introduced by cross-sample contamination (GATK 
v4.4.0.0 GetPileupSummaries, CalculateContamination), 
and second, using the F1R2 counts collected by Mutect2 
to calculate prior probabilities of single-stranded substi-
tution errors prior to sequencing for each trinucleotide 
context (GATK v4.4.0.0 LearnReadOrientationModel). 
Finally, callsets were filtered (GATK v4.4.0.0 Filter-
MutectCalls) with default thresholds. Filtered callsets, 
including only SNVs and insertion/deletions (indels), 
were then annotated using Ensembl Variant Effect Pre-
dictor (VEP) v110.1 [53] and converted to the mutation 
annotation format (MAF) using vcf2maf v1.6.2.1 [37]. 
The maftools [51] R package was used to visualize and 
summarize somatic variant types across samples. Tumor 
mutational burden (TMB) was calculated as the total 
number of somatic mutations divided by the 34 Mb tar-
get exome capture size, following the maftools function 
tmb.

Oncoprint plots of 110 clinically relevant (CR) genes 
and the top 50 genes with the highest frequency of 
somatic alterations were generated for BrM and ECT 
samples. Differences in TMB between FFPE BrM and 

https://github.com/davidsjoberg/ggsankey
https://github.com/davidsjoberg/ggsankey
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
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FFPE ECT patient-matched samples (n = 6), and FFPE 
BrM and frozen BrM patient-matched samples (n = 15) 
were tested using the Wilcoxon signed-rank test. Differ-
ences in TMB between PAM50 inferred subtypes within 
FFPE BrM (Basal: n = 5, HER2-enriched: n = 6, LumA: 
n = 2, LumB: n = 4), FFPE ECT (Basal: n = 2, HER2-
enriched: n = 3, LumA: n = 1), and frozen BrM (Basal: 
n = 7, HER2-enriched: n = 5, LumA: n = 5, LumB: n = 2) 
were tested using the Kruskal–Wallis test within each 
sample type. The Normal PAM50 inferred subtype group 
was dropped from these comparisons due to low sample 
size (m = 2). Differences in TMB between clinical sub-
types within FFPE BrM and frozen BrM were also evalu-
ated using Kruskal–Wallis tests; analyses were performed 
using clinical subtype determined in a BrM.

CNVs were called in all tumor samples (m = 76) using 
cnvkit v0.9.10 [71]. First, sequence-accessible coordinates 
were identified using the publicly available GATK hg38 
reference genome (Homo_sapiens_assembly38.fasta) to 
estimate on- and off-target bin sizes (cnvkit access) and 
read depths from input recalibrated BAM files for all 
WES samples (cnvkit autobin). Coverage was then calcu-
lated from input BAM read depths within the given on- 
and off-target regions (cnvkit coverage). A pooled normal 
reference was constructed using all patient-matched 
blood samples (output from cnvkit coverage; cnvkit ref-
erence) and copy number segments were inferred for 
each tumor sample using cnvkit segment, with –thresh-
old set to 0.00001 to lower the significance threshold for 
accepting breakpoints during segmentation, and with the 
–drop-low-coverage flag to drop very low coverage bins 
before segmentation. Segmentation outputs were con-
verted to SEG format (cnvkit export seg).

Finally, the following GISTIC2 [55] analyses were con-
structed using BrM samples. The first was run across all 
BrM samples to identify regions of the genome that were 
significantly amplified or deleted. The analysis was also 
run for sample subsets representing each PAM50 sub-
type and each clinical subtype determined based on a 
BrM. SEG files for each BrM sample were concatenated 
into a TSV file either within each PAM50 inferred intrin-
sic subtype, clinical subtype, or across all BrM samples 
to create a single input for each GISTIC2 run. GISTIC2 
was run using the hg38 reference (hg38.UCSC.add_
miR.160920.refgene.mat) with default param-
eters, except for -conf, which was increased to 0.9 to 
increase the confidence level used to calculate regions 
containing a driver, and -genegistic, which was set to 1 
to use the gene GISTIC algorithm for calculating the sig-
nificance of deletions at a gene level instead of a marker 
level. Plots were generated to illustrate aberrant regions 
based on two significance thresholds: q values less than 
0.25 (gray peaks) and 0.1 (red and blue peaks).

Differential gene expression
Differential gene expression based on sample type was 
analyzed within the framework of a negative binomial 
model using R [63] and the extension package DESeq2 
v1.38.2 [49]. The following contrast was analyzed using 
patient-matched samples: ECT versus BrM in FFPE sam-
ples, with ECT as the baseline level, and controlling for 
patient identity. Genes were pre-filtered to select genes 
with more than five reads in a minimum of 20% of the 
ECT and BrM samples. False-discovery-rate (FDR) 
-adjusted p values, i.e., q values, were reported; genes 
with q value < 0.05 were considered significant. Gene set 
enrichment analysis (GSEA) was conducted on the same 
set of contrasting groups, first using 50 Hallmark path-
ways [45], and then with a set of 79 pathways of inter-
est that were selected a priori and included pathways 
relevant to oxidative phosphorylation, MAPK interact-
ing serine/threonine Kinase (MNK), cyclin dependent 
kinase (CDK), DNA damage repair, and immune signal-
ing (Additional file 2). GSEA was performed using the R 
package fgsea v1.24.0 [39] with the permissible geneset 
sizes set to 15–500 and 3–1000 for the Hallmark path-
ways and the pathways of interest, respectively.

Immune cell fractions
To investigate immune cell infiltration, we used the CIB-
ERSORTxFractions module within the CIBERSORTx 
software [59] to infer the relative fraction of 22 immune 
cell types based on gene expression data and the LM22 
[59] signature matrix. Cell fraction differences between 
sample types in patient-matched samples (FFPE BrM and 
FFPE ECT, FFPE BrM and frozen BrM) were tested using 
the Wilcoxon signed-rank test and, to account for mul-
tiple testing, the resulting p values were adjusted using 
the Benjamini–Hochberg method [4]. Differences in cell 
fractions based on PAM50 intrinsic subtype or based on 
clinical subtype within FFPE BrM and frozen BrM were 
evaluated using Kruskal–Wallis tests; only clinical sub-
types determined based on a BrM were used. Changes in 
relative cell fractions within selected cell types between 
FFPE BrM and FFPE ECT sample types and PAM50 
classification of the RNA sample were investigated as 
well. For instance, variation within dendritic cell popu-
lations was calculated as the fraction of each dendritic 
cell type (activated and resting) over the sum of all den-
dritic cells; the same procedure was used to investigate 
macrophages (M0, M1, and M2), T cells (CD4 memory 
activated, CD4 memory resting, CD4 naive, CD8, folli-
cular helper, gamma delta), and dendritic cells (activated 
and resting). Changes in the ratio of M1:M2 macrophage 
fractions based on sample type and PAM50 classification 
of the RNA sample were also investigated. To account for 
zero values, M1:M2 ratios were transformed using the 
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formula atan( log2(M1/M2))/pi*2. Changes in M1:M2 
ratios between sample types in patient-matched samples 
(FFPE BrM and FFPE ECT, FFPE BrM and frozen BrM) 
were tested using the Wilcoxon signed-rank test. Within 
each sample type, differences in M1:M2 ratios based on 
PAM50 classification were tested using the Kruskal–Wal-
lis test.

Time‑to‑event analyses
Cox proportional hazards (PH) regression was used to 
perform time-to-event analyses on the following out-
comes: (i) initial diagnosis to craniotomy, (ii) craniotomy 
to death/last follow-up, and (iii) initial diagnosis to death/
last follow-up. Time-to-event analyses were performed 
using the R extension package survival v3.4.0 [72]. The 
association of PAM50 inferred subtype with the times to 
these events was investigated using the patient’s inferred 
subtype as inferred from RNA expression and selected 
based on sample type priority (frozen BrM > FFPE 
BrM > FFPE ECT) and availability as described above. 
The associations between clinical subtypes with the times 
to these events were also investigated; analyses were 
performed using clinical subtype determined based on 
a BrM. A two-part analysis was used to examine asso-
ciations between geneset enrichment in FFPE BrM and 
the time from craniotomy to death/last follow-up. First, 
Cox PH regression was used to estimate the association 
between variance-stabilized expression of each gene 
with survival, controlling for the patients’ inferred sub-
types. Second, the Wald statistics for the gene effect from 
each of the Cox PH models were used to run GSEA, as 
described above, on nine Hallmark pathways, (Choles-
terol Homeostasis, DNA Damage Repair, IL6 JAK STAT3 
Signaling, IL2 STAT5 Signaling, Inflammatory Response, 
Alpha Response, Interferon Gamma Response, Oxidative 
Phosphorylation, Reactive Oxygen Species Pathway), pre-
selected based on their involvement in immune signaling 
or because they were previously reported to be prognos-
tic [23, 43, 77]. Quantile–quantile plots (qq-plots) were 
generated for the Cox PH models. Kaplan–Meier (KM) 
plots were generated to illustrate selected associations 
with time to event outcomes. For the purposes of illus-
trating associations with continuous variables, covariates 
were dichotomized at the median.

Results
Patient and sample cohort characteristics
Patient cohort demographics are listed in Table 1. There 
were 42 breast cancer patients with BrM included in 
this analysis, of which 39 patients contributed 40 BrM 
specimens sufficient for sequencing procedures. Of the 
42 patients, approximately two-thirds were Caucasian 
(n = 29, 69.0%), with Black/African American (n = 12, 

28.6%) and Asian (n = 1, 2.4%) races also represented; 
41 (97.6%) identified as non-Hispanic, with one (2.4%) 
declining to report ethnicity. All 42 patients were female, 
and the median age at initial breast cancer diagnosis and 
BrM surgery were 48 and 53  years old, respectively. All 
clinical subtypes, including ER/PR (HR) + HER2− (n = 13, 
31.0%), HER2 + (n = 18, 42.9%), HR−HER2− (n = 7, 
16.7%) were represented, along with 1 HR + HER2-equiv-
ocal patient who was combined with the HR + HER2− 
patients for applicable analyses (total HR + HER2− in 
analyses n = 14). Clinical subtype assignment of BrM was 
determined by clinical testing of the BrM if available, 
which was true for the majority of cases (n = 25, 59.5%). 
In the absence of information from the BrM, clinical 
subtype was annotated based on ECT (n = 7, 16.7%) or 
primary tumor (n = 2, 4.8%); otherwise, it could not be 
determined (Unknown/NA n = 8, 19.0%) (Table 1). Of the 
40 BrM specimens sufficient for sequencing, most were 
newly diagnosed at the time of craniotomy (32 surgeries, 
80.0%), with several recurrent (6 surgeries, 15.0%) and 
unknown (2 surgeries, 5.0%). BrM were largely untreated 
(31 surgeries, 77.5%), with the known treated BrM (7 
surgeries, 17.5%) having received prior radiation therapy 
(3 WBRT, 3 SRS,1 WBRT and SRS). Four BrM speci-
mens (10.0%) were from patients who had undergone a 
prior surgery (Table  1). Treatments received following 
craniotomy are listed in Additional file  1: Supplemen-
tary Table S1. Most patients in the cohort were deceased 
(n = 37, 88.1%), with the remainder (n = 5) lost to follow 
up (Table 1). Median overall survival time from diagnosis 
to death/last follow-up was 74.3 months (95% confidence 
interval: 55.6, 122.0).

Tissue specimens from the 42 patients were obtained 
and sequenced for this study, specifically frozen BrM, 
FFPE BrM, FFPE ECT. In addition, patient-matched 
blood DNA samples were collected to account for ger-
mline mutations in tumor samples and to improve infer-
ence of somatic alterations. Summaries of the specimen 
tissue types and sequencing types are in Additional file 1: 
Supplementary Table  S1, with the patient specimen 
breakdown, subsequent sequencing, and resulting pairs/
triplets further illustrated in Additional file  1: Supple-
mentary Fig. S1. Of the 42 patients, 30 patients yielded 31 
frozen BrM specimens, 36 patients yielded 37 FFPE BrM 
specimens, 12 patients yielded 13 FFPE ECT specimens, 
and 25 patients yielded 26 patient-matched blood DNA 
specimens. One patient contributed BrM specimens from 
two craniotomies; however, only samples derived from 
the first craniotomy were included in patient-matched 
analyses. One patient contributed two ECT specimens, 
one from breast tissue and one from an unspecified loca-
tion; however, only the breast specimen was included in 
patient-matched analyses. These excluded specimens 
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are referred to hereafter as “secondary BrM” or “second-
ary ECT” specimens (Supplementary Fig.  S1) and were 
excluded from analyses of TMB, DE, and immune cell 
populations. Patient-matched DNA blood samples used 
to call somatic variants were only available for a subset 
of patients (n = 25). CNV analyses used all tumor DNA 
samples regardless of whether a patient-matched blood 
DNA sample was available.

Intrinsic and clinical subtype classifications 
and concordance
We performed intrinsic molecular subtype analyses using 
RNAseq data based on the relative expressions of the 
50-gene profile of samples (Additional file 1: Supplemen-
tary Fig. S2a) to determine the PAM50 inferred intrinsic 
molecular subtype for each sample type (Additional file 1: 
Supplementary Fig. S2b). We assessed subtype concord-
ance within patients with multiple sample types. Matched 
FFPE ECT and FFPE BrM samples were largely concord-
ant (n = 6/10 patients, 60%, Fig. 1a). One of the four non-
concordant patients contributed a second ECT from an 
unspecified location (not shown in Fig.  1); in sum, the 
patient contributed a HER2-Enriched (HER2-Enr) FFPE 
BrM, a Normal-like (Normal) FFPE ECT from breast 
tissue, and a HER2-Enr FFPE ECT from an unspecified 
location. The 3 patient-matched ECT samples classified 
as HER2-Enr had matched HER2-Enr FFPE BrM, and 
two of the three Basal-like (Basal) ECT were concord-
ant with their Basal BrM. Discordant pairs involved the 
Luminal B (LumB) or Normal subtypes: of the three ECT 
with LumB classification, only one had a corresponding 
LumB FFPE BrM, and the Normal ECT was matched to a 
HER2-Enr BrM. Patients with FFPE BrM and frozen BrM 
matched pairs (n = 26 patients, Fig. 1b) were also largely 
concordant (n = 20/26 patients, 76.9%). Discordant pairs 
were again among the pairs with a LumB subtype: only 
one of the six FFPE BrM classified as the LumB subtype 
were also called as LumB in the matched frozen BrM, 
with the remainder classified as Normal (n = 1), Luminal 
A (LumA) (n = 3), or Basal (n = 1) in the frozen BrM. The 
remaining discordant pair was a LumA FFPE BrM with a 
LumB frozen BrM. In the 7 patients with triplet samples 
(8 FFPE ECT, 7 FFPE BrM and 7 frozen BrM samples, 
Fig.  1c), most cases were concordant (n = 4/7 patients, 
57.1%) across triplets, with 100% concordance between 
corresponding FFPE BrM and frozen BrM samples in 
those triplets. Observed discordance again involved the 
LumB and Normal subtypes in ECT samples.

We also investigated concordance within BrM speci-
mens between the PAM50 inferred subtype and the 
BrM-determined clinical subtype (Additional file 1: Sup-
plementary Fig.  S3). A total of n = 22 BrM had both an 
assigned PAM50 subtype and a known clinical subtype. 

There was considerable diversity between PAM50 and 
clinical subtype alignments, though as expected, all BrM 
called HER2-Enr by PAM50 were HER2 + clinically, if 
clinically known (n = 7/7, 100%). Most Basal-like BrM 
were HER2− clinically, if known (3/5, 60%). Both LumB 
BrM with known clinical subtypes were HR + as were 
most (n = 6/7, 85.7%) of the LumA BrM.

Mutational and somatic copy number alterations 
through WES
We compared TMB, estimated from the WES data, 
between two sets of patient-matched sample types. The 
first examined differences in TMB between patient-
matched FFPE BrM and FFPE ECT (n = 6). While FFPE 
BrM demonstrated a higher mutational load than 
FFPE ECT, there was no significant difference detected 
between tumor location and TMB (median mutations/
MB: 8.22 in FFPE BrM vs. 5.38 in FFPE ECT, p = 0.063; 
Fig. 2a). We also examined differences in TMB between 
patient-matched FFPE BrM and frozen BrM. There was 
no significant difference detected between sample stor-
age method and TMB (median mutations/MB: 4.06 in 
FFPE BrM vs. 3.47 in frozen BrM, p = 0.389; Fig.  2b). 
Differences in TMB were also examined across inferred 
intrinsic subtypes (Fig. 2c) within each sample type. No 
significant differences were detected within any sample 
type group (FFPE BrM, p = 0.0671; FFPE ECT, p = 0.930; 
frozen BrM, p = 0.487). Differences in TMB were also 
examined across clinical subtypes within FFPE BrM and 
frozen BrM samples (Additional file  1: Supplementary 
Fig. S4). For FFPE BrM, TMB varied by clinical subtype 
when restricted to those BrM whose subtype was deter-
mined by BrM (n = 11, p = 0.018), with HR + HER2− 
samples having higher average TMB compared to other 
subtypes, though only one case was HR−HER2−. No 
significant differences by clinical subtype were detected 
within frozen BrM samples. An analysis of shared muta-
tions within FFPE ECT and FFPE BrM patient-matched 
pairs (n = 6) revealed varying degrees of mutational 
conservation within patients between ECT and BrM 
(Fig.  2d). Investigation of CR genes (Fig.  2e) and the 50 
most frequently altered genes (Fig. 2f ) in all samples with 
patient-matched blood DNA demonstrated that TP53 
was the most frequently altered gene (64% of samples), 
and the only gene altered in over half of samples (Addi-
tional file 3). Other genes were altered in a third or less 
of samples and were limited to a few patients’ tumors. 
As expected, across all somatic alterations, missense 
mutations were the predominant mutation observed 
(Additional file  4). For matched FFPE BrM-frozen BrM 
samples, alterations tended to be found in both samples, 
though some genes did show different mutational status 
between FFPE and frozen samples (e.g. FIP1L1 missense 
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alterations noted in FFPE BrM but not matched frozen 
BrM of 3 patients). Some patients’ tumors did demon-
strate differential alterations between ECT and BrM in 
CR genes: one (P14) lost an ERBB3 alteration from the 

ECT to the BrM; another (P36) lost ATM, CD44, and 
BRCA2 and gained BRAF and NF1 alterations in the BrM 
compared to ECT; a third (P40) gained alterations in 
ESR1, CCND2, FOXC1 and GRB7 in BrM that were not 

Fig. 1  Intrinsic subtype concordance between extracranial tumors and brain metastases. Concordance of PAM50 inferred intrinsic subtypes 
in patients between matched a FFPE ECT and FFPE BrM (n = 10 patients), b FFPE BrM and Frozen BrM (n = 26), and c FFPE ECT, FFPE BrM, and Frozen 
BrM (n = 7). For the patient that contributed two ECT FFPE samples, only the ECT from breast tissue (PAM50 Normal) is considered in panels a and c; 
the other ECT sample was classified as HER2-Enr, matching the FFPE BrM from that patient. For the patient that contributed two FFPE BrM and two 
Frozen BrM, all samples were classified as Basal
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present in the ECT; a 4th patient (P41) gained an ERBB2 
and lost an ANLN alteration in the BrM that were present 
in the ECT.

Analysis of copy number variations (CNVs) of BrM 
samples through GISTIC2 demonstrated several fre-
quently gained and lost regions across the genome. 
Across all samples, 1p35-36, 8q23-24, 17q23-24, and 
20q13 were frequently gained, and 1p36, 4p16, 8p, 9p, 
11q, 17p, 19q were frequently lost (Fig.  3a). Within the 
Basal samples, BrM exhibited unique gains in 3q and 22q, 
and losses in 4p, 5q and 15q (Fig.  3b). HER2-Enriched 
samples featured unique amplifications in 1q, 20q, and 
17q, including a large focal amplification at 17q12, where 
the ERBB2 gene (HER2) is located, in addition to losses at 
9p and 21p (Fig. 3c). LumA (Fig. 3d) and LumB (Fig. 3e) 
samples displayed fewer gained/lost regions overall, with 
LumA samples showing gains 7p and loss of 11q regions, 
and LumB samples exhibiting 8p gains and 9p21 and 16q 
losses.

Assessing gene-level copy number variations by 
CNVkit/GISTIC2 highlighted some expected and 
novel differences by PAM50 subtype in CR genes. As 
expected, the genes with high frequency of amplifica-
tion across all subtypes include MYC (which correlates 
with the high frequency of regional amplifications at 
8q24) in Basal and Luminal samples, and CCND1 (on 
11q13). Unsurprisingly, the genes ERBB2 (HER) and 
GRB7, both of which are located on 17q, were amplified 
in every HER2-Enr sample (Fig.  3f ). Relatively unique 
to Basal samples, ENSA, CD44, GPR160, CDKN2A/B, 
FOXC1 and PIK3CA were frequently amplified, while 
PTEN, GATA3, NOTCH1, and KRT14/17 were often lost. 
Somewhat restricted to HER2-Enr samples, beyond the 
expected ERBB2 amplifications, were amplifications in 
ANLN, BLVRA, and CCND2 in most samples and losses 
in BRCA1/2, CCND1, CDK6 and TP53. AKT3 was fre-
quently gained in HER2-Enr, LumA and LumB samples, 
as was CCND1 and EXO1, while CDKN2A/B were often 
lost. LumA samples demonstrated somewhat unique 
gains of EGFR and loss of FANCC, JAK2, FGFR1, and 
SFRP1, while LumB samples showed gains of PALB2, 

CENPF, NUF2, and UBE2T with losses of ACTR3B and 
MKI67.

Analyses of CNVs in BrM samples by clinical sub-
type were also performed (Additional file  1: Supple-
mentary Fig.  S5) using clinical subtypes as determined 
by BrM (n = 22, Supplementary Fig.  S5a). HR−HER2− 
BrM showed restricted gains in 6q15 and losses in 
4q13, 11q24, and 13q14 (Supplementary Fig. S5b). HR−
HER2 + specimens exhibited amplifications in several 
regions, including 17q12 (ERBB2 locus) as well as gains 
at 8q23 and 12p13, with losses at 5q13 (Supplementary 
Fig. S5c). Amplifications in 2p25, 3q11, 5p15, 9q34, and 
17q25 and losses in 3p14, 9p21, 11q23, 16q23, 17q12, 
17q21, and 19q13 were observed in HR + HER2− BrM 
(Supplementary Fig.  S5d), while the expected 17q12 
amplification along with gains in 1q44, 8q23, 11q13, 
12p13, 17q24, and 20q13 and losses in 1p36, 2q37, 
7q35, 9p11, 11q24, 17p13, and 21p11 were observed in 
HR + HER2 + specimens (Supplementary Fig. S5e). Given 
the observed chromosomal variations, several clini-
cally relevant genes exhibited amplifications and dele-
tions, with some being somewhat restricted to specific 
subtypes, such as amplification of ERBB2 and GRB7 in 
HER2 + cases for both HR + and HR−, loss of PTEN in 
HR−HER2− samples, and loss of BRAF and EGFR, in 
HR + HER2 + cases with additional loss of FGFR1 in both 
HR + HER2 + and HER2− cases.

Gene and pathway expression by RNA sequencing
Differential gene expression was evaluated by utilizing 
total RNAseq data in matched FFPE ECT-FFPE BrM 
specimens. Patient-matched FFPE ECT and FFPE BrM 
samples were available from ten patients, however, two 
samples were excluded as outliers (Additional file 1: Sup-
plementary Fig.  S6) and the second FFPE ECT sample 
contributed by one patient was excluded. As a result, 
this analysis included eight matched FFPE ECT-FFPE 
BrM samples. In summary, 457 genes were differen-
tially expressed between these 2 tissue locations, with 
195 genes upregulated and 262 genes downregulated in 
the BrM tissues compared to ECT (Fig. 4a). Among the 

Fig. 2  Mutational landscape of extracranial tumors and brain metastases. TMB for matched BrM-ECT and FFPE-frozen tumors with somatic variant 
calls, a paired FFPE BrM and FFPE ECT (n = 6 patients) and b paired FFPE BrM and frozen BrM (n = 15). Note that median lines shown in a and b are 
for all samples plotted. c TMB by PAM50 inferred intrinsic subtype for each sample type (FFPE BrM, n = 17; FFPE ECT, n = 6; Frozen BrM, n = 19; the two 
PAM50 Normal samples are not shown nor analyzed). d Circos plot demonstrating the total number of variants in each sample (by the width 
of the sample’s band in the outer ring) and the number of shared variants among the samples in patients with matched FFPE ECT and FFPE BrM 
(n = 6; by the width of the central bands). Secondary BrM and ECT samples are not shown nor analyzed in a-d. Oncoplots of e clinically relevant 
and f top 50 altered genes identified in tumor samples with somatic variant calls, including FFPE BrM (n = 18 patients, m = 19 samples), frozen 
BrM (n = 19, m = 20), and FFPE ECT (n = 7, m = 8). Top barcharts above e and f show tumor mutational burden (TMB) as the number of non-silent 
mutations by mutation type called across the genome. Clinical source refers to the location of the lesion assessed for clinical biomarkers (ER, PR 
and HER2) in that patient’s medical records used to assign the clinical subtype of the BrM

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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top significantly differentially expressed genes (DEGs), 
LAMC3, APC2, IL1B, AREG, MORN2, HSPA1A/B, 
APOD, MYRF and DNAJB1 were higher in BrM com-
pared to ECT, while LRRC15, CDHR1, CON5, CSCR3, 
NSG1, BRG1, WIN2, CXCL14, ANGPTL2 were lower in 

BrM. The top 50 increased and top 50 decreased DEGs in 
the FFPE BrM samples compared to FFPE ECT samples 
are provided in Additional file 5. GSEA pertaining to the 
Hallmark pathways demonstrated increased expression 
of MYC target genes, gene targets of E2F transcription 

Fig. 3  Copy number variants across BrM samples. Chromosomal map by GISTIC of CNV frequency and size by G-Score in a all BrM (n = 38 patients, 
m = 64 samples), b Basal (FFPE BrM n = 7, m = 8; frozen BrM n = 8, m = 9), c HER2-Enr (FFPE BrM n = 11, m = 11; frozen BrM n = 10, m = 10), d LumA 
(FFPE BrM n = 4, m = 4; frozen BrM n = 6, m = 6), and e LumB (FFPE BrM n = 7, m = 7; frozen BrM n = 4, m = 4). Gains/amplifications (red) are above the x 
axis, losses/deletions (blue) below the x axis, with significant (FDR < 0.10) variants colored and the chromosome arm region annotated; grey 
peaks indicate gains/amplifications with FDR < 0.25. Plots for PAM50 Normal and unassigned samples are not shown, f Heatmap of log2 copy 
number ratios in CR and PAM50 genes overlapping significantly amplified/deleted regions identified by GISTIC2 (FDR < 0.25) in FFPE BrM (n = 32 
patients, m = 33 samples) and frozen BrM (n = 28, m = 29) by PAM50 inferred subtype. PAM50 Normals are not shown (FFPE BrM n = 1, m = 1; frozen 
BrM n = 1, m = 1) because no significantly amplified/deleted regions were identified by GISTIC2 among these samples. For cases where there 
was more than one GISTIC peak region associated with a given gene symbol and sample, the longest peak region was selected to be included 
in the heatmap. Clinical source refers to the location of the lesion assessed for clinical biomarkers (ER, PR and HER2) in that patient’s medical records 
used to assign the clinical subtype of the BrM
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Fig. 3  continued
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factors, and genes involved in oxidative phosphoryla-
tion in BrM compared to ECT. In parallel, pathways 
pertaining to allograft rejection, genes defining epithe-
lial-mesenchymal transition, and genes up-regulated in 
response to interferon gamma and other inflammatory 

pathways were more highly expressed in ECT compared 
to BrM (Fig. 4b, Additional file 6). Looking at an a priori-
selected set of pathways of interest from Hallmark path-
ways, KEGG, Gene Ontology (GO), and the literature 
[23, 42, 43], FFPE BrM tissues had increased expression 

Fig. 4  Differential gene and pathway expression in brain metastases compared to extracranial tumors. a Volcano plot of differentially expressed 
genes, b Hallmark pathways enriched in FFPE BrM compared to FFPE ECT, and c pathways of interest enriched in paired FFPE BrM-FFPE ECT samples 
(n = 8 patients). Excluded from analyses were a secondary ECT sample from a single patient and 2 patients with low quality samples and/or other 
outlier features. Genes were pre-filtered to those with more than five counts in a minimum of 20% of sample libraries per group
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of pathways related to oxidative phosphorylation, MAPK 
interacting protein kinase (MNK), cyclin dependent 
kinases (CDKs) and DNA damage repair, while FFPE 
ECT displayed higher expression of Immune pathway 
genes (Fig. 4c, Additional file 7).

Immune landscape profiling via CIBERSORTx
The immune landscape of 22 immune cell types in 
BCBrM and matched ECT was investigated through 
CIBERSORTx deconvolution of RNAseq data. Compar-
ing ten patient-matched FFPE ECT and FFPE BrM, only 
active dendritic cells showed differential fractions, being 
higher in the BrM compared to ECT (padj = 0.04, Fig. 5a). 
Comparing 26 patient-matched FFPE BrM and fro-
zen BrM, M2 macrophages (padj = 0.01) and neutrophils 
(padj = 0.01) were higher in frozen BrM compared to FFPE 
BrM (Additional file  1: Supplementary Fig.  S7a). After 
adjusting for multiple testing across cell types, no signifi-
cant differences in cell fraction based on PAM50 intrin-
sic subtypes were detected within a given sample type 
(FFPE ECT, FFPE BrM, or frozen BrM) (Fig.  5b, Addi-
tional file  1: Supplementary Fig.  S7b). Investigation of 
changes in relative cell fractions within selected cell types 
(i.e. dendritic cells, macrophages, and T cells), between 
FFPE BrM and FFPE ECT sample types and PAM50 clas-
sification of the RNA sample did not reveal strong dif-
ferences by sample type within PAM50 status. However, 
inferences were limited by small sample sizes within each 
inferred subtype group (Additional file 1: Supplementary 
Fig. S8a–c). M1:M2 ratios were detected as lower in FFPE 
BrM as compared to patient-matched FFPE ECT based 
on 8 sample pairs with a non-zero M1 or M2 fraction 
(p = 0.007, Additional file 1: Supplementary Fig. S9a). No 
significant differences in M1:M2 ratios based on inferred 
intrinsic subtypes were detected within a given sample 
type (FFPE ECT, FFPE BrM, or frozen BrM, Additional 
file 1: Supplementary Fig. S9b–d).

Differences in inferred cell fractions by CIBERSORTx 
were also examined across clinical subtypes within FFPE 
BrM or Frozen BrM samples with clinical subtype deter-
mined by BrM testing (Additional file  1: Supplemen-
tary Fig.  S10); however, no significant differences were 
detected after adjusting for multiple comparisons.

Time‑to‑event analyses
Utilizing clinical annotation of patient specimens, the 
outcomes of the patient cohort were assessed. For the 
patient with two asynchronous BrM that were resected 
and sequenced, the date of the first craniotomy was used 
for time-to-event calculations. The median length of time 
between a patient’s initial BC diagnosis to craniotomy 
of the sequenced BrM was 43.35  months and varied by 
inferred intrinsic subtype (p = 0.042; LumA (n = 10) sub-
type 40.15  months, LumB (n = 6) 77.50  months, HER2-
Enr (n = 12) 35.50  months, Basal (n = 9) 46.60  months, 
and Normal (n = 2) 111.0 months (Fig. 6a). Median time 
from initial diagnosis of BC to death/last follow-up was 
74.30 months for the overall cohort, and did not vary by 
inferred subtype (p = 0.85, Fig. 6b). Median survival from 
craniotomy to death/last follow-up was 16.65  months, 
and similarly did not significantly differ by inferred sub-
type (p = 0.32, Fig. 6c). We explored whether expression 
of nine preselected Hallmark pathways were associated 
with time from craniotomy to death/last follow-up in 
patients with FFPE BrM (Fig. 6d). Six enriched pathways 
showed an association with worse survival outcome: 
DNA damage repair (Additional file  1: Supplementary 
Fig. S7a), inflammatory response (Additional file 1: Sup-
plementary Fig.  S7b), oxidative phosphorylation, inter-
feron alpha response, interferon gamma response, IL2/
STAT3 signaling, and cholesterol homeostasis. A caveat 
of this analysis is that we observed inflated p values from 
the Wald statistics of the gene-level time-to-event Cox 
PH models (Additional file 1: Supplementary Fig. S8).

We also tested for an association between clinical sub-
type as determined in BrM (n = 25) and the times to these 
events (Additional file  1: Supplementary Fig.  S13). No 
significant association was detected between clinical sub-
type and time from initial diagnosis to craniotomy (Addi-
tional file 1: Supplementary Fig. S13a). Time from initial 
diagnosis to death or last follow-up (Additional file  1: 
Supplementary Fig.  S13b) and time from craniotomy to 
death or last follow-up (Additional file  1: Supplemen-
tary Fig.  S13) varied by clinical subtype. HR−HER2− 
and HR−HER2 + cases had the shortest time from initial 
diagnosis to death/last follow-up, and HR−HER2− cases 
also had the shortest time from craniotomy to death/

Fig. 5  Deconvolved immune cell populations in extracranial tumors and brain metastases. a Fractions of immune cell populations inferred 
by CIBERSORTx in FFPE ECT (n = 12 patients, m = 12 samples) and FFPE BrM (n = 33, m = 33). Patient-matched FFPE BrM and FFPE ECT samples 
(n = 10) are connected by lines colored by slope direction. Significant differences (adjusted p < 0.05) are displayed between patient-matched FFPE 
BrM and FFPE ECT cell fractions based on Wilcoxon signed-rank tests with p values adjusted for testing multiple cell types. b Fractions of immune 
cell populations inferred by CIBERSORTx by intrinsic subtype within each tissue type (FFPE ECT n = 12, m = 12,; FFPE BrM n = 33, m = 33). No 
significant differences were detected between intrinsic subtypes within a given sample type using Kruskal–Wallis tests with p values adjusted 
for testing multiple cell types. Secondary BrM and ECT samples are not shown nor analyzed. PAM50 Normal sample (n = 1, m = 1) is shown in panel 
b, but not analyzed

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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last follow-up compared to other clinical subtypes, 
while HR + HER2 + cases had the longest time for both 
intervals.

Discussion
In this study, we have described the genomic and 
immune landscape of a cohort of 42 patients with avail-
able BCBrM tissues, along with some matched ECT, with 
a focus on recurrent alterations and potential biological 
differences between inferred intrinsic and clinical sub-
types. We also report initial findings comparing frozen 
and FFPE processed BrM to identify potential technical 
artifacts that may influence clinically relevant interpre-
tations of genomic data in the clinical setting. To our 
knowledge, this is the first study to analyze bulk total 
RNA sequencing and whole-exome DNA sequencing in 
a clinically-annotated set of both frozen and FFPE BrM, 

with some matched FFPE ECT, across all intrinsic and 
clinical subtypes of breast cancer with the goal of yield-
ing a deeper understanding of the immunogenomics of 
BCBrM.

Comparison of patient-matched samples demonstrated 
that inferred intrinsic subtypes were largely concord-
ant across intra-patient BrM and ECT tumor samples. 
While the majority of matched FFPE ECT and FFPE BrM 
exhibited the same intrinsic subtype, a significant por-
tion (40%) of pairs were discordant, a rate similar to those 
found in prior studies within both intrinsic and clinical 
subtype comparisons [25, 32, 40, 57]. Of the discordant 
matched samples, half demonstrated HER2 enrichment 
in the BrM compared to the ECT, a phenomenon that 
has been previously reported in larger matched sample 
cohorts and has clinical implications [25, 32, 57, 62, 75]. 
Similar to some prior reports in primary BC tumors [38, 

Fig. 6  Clinical outcomes of patient cohort. Kaplan-Meyer plots of times to events (months) by inferred intrinsic subtype for time from a initial 
breast cancer diagnosis to craniotomy (p = 0.042, n = 39), b initial BC diagnosis to death or last follow-up (not significant) and c craniotomy to death/
last follow up (not significant). d Association of expression of nine selected HALLMARK pathways of interest and survival from craniotomy to death/
last follow-up in 33 FFPE BrM samples from 33 patients. PAM50 Normal BrM were excluded due to small sample size. For the patient with two 
craniotomies, data from the first craniotomy was used. Normalized enrichment score (NES) from geneset enrichment analysis. Pathways are ordered 
by adjusted P values. Positive values indicate that gene expression increases the hazard ratio (decreases survival time)
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78], comparison of PAM50 intrinsic subtypes and clinical 
subtypes in BrM specimens demonstrated considerable 
heterogeneity between the two means of classifying BC 
subtypes, though major features like HER2 amplification/
enrichment were consistent. Prior work has also shown 
that intrinsic subtypes can be more prognostic and pre-
dictive of therapeutic response and clinical outcomes in 
patients relative to immunohistochemical classifications 
alone [38, 60]. With the now well-demonstrated efficacy 
of HER2-targeting antibody–drug conjugates, such as 
trastuzumab deruxtecan (T-DXd) and tyrosine kinase 
inhibitors, notably tucatinib-based regimens, enrichment 
of HER2, and the ability of both immunohistochemical 
and molecular subtyping methods to accurately iden-
tify these cases in patients with BCBrM will alter the 
therapeutic approach and potential outcomes for these 
patients [10, 33, 58, 68].

Overall, BrM and ECT had similar TMB levels, though 
in matched samples, there was a trend towards higher 
TMB in BrM compared to ECT, a feature also found in 
prior larger studies in BrM compared to ECT/primary 
tumors [26, 31, 65], in BC metastases compared to pri-
mary BC tumors [15] and in metastatic compared to 
early BC primary tumors [2]. Within BrM, TMB did not 
significantly differ by intrinsic subtype, but did vary by 
clinical subtype in FFPE BrM, with HR + HER2− exhib-
iting higher average TMB than other subtypes, a feature 
which supports some prior reports of higher TMB in 
HR + HER2− and HR-HER2− metastatic BC compared 
to early stage or primary BC [5, 26], though this has not 
been found across every study [2]. Higher TMB may pre-
dict response to immunotherapies in a tumor agnostic 
fashion, as evidenced by the approval of pembrolizumab 
in this setting, thus opening another potential BrM-
focused therapeutic avenue for patients [50, 67]. In this 
cohort and except for the tumor suppressor gene TP53, 
most gene-level somatic alterations were unique to indi-
vidual patients’ BrM, as opposed to recurrent alterations 
across the cohort. However, while not recurrent between 
patients, many of the observed alterations were consist-
ent with prior reports of acquired mutations in meta-
static BC, those enriched in BCBrM, and those detected 
in ctDNA of CSF from patients with BCBrM, includ-
ing AKT1, BRAF, EGFR, ERBB2, ESR1, FGFR2, GATA3, 
PIK3CA, PTEN, and RB1 [5, 13, 14, 25, 26]. Albeit less 
frequent in our cohort, several additional gene alterations 
with known matched therapies were observed in indi-
vidual patients, including BRCA2 and PTEN alterations, 
opening up treatment opportunities with PARP inhibi-
tors (i.e. talazoparib [48]) and AKT inhibitors (i.e. capiva-
sertib [73]).

On the chromosome-level, the CNV landscape analysis 
of BrM yielded biologically-relevant and subtype-specific 

alterations including both gains and losses. Of note and 
across BCBrM subtypes, results illustrated gains in chro-
mosomes associated with known driver genes, such as in 
8q (MYC), 17q12 (ERBB2, GRB7), and 20q13 (AURKA) 
as well as losses in regions known to contain tumor 
suppressive genes (e.g. 9p21/CDKN2A, 13q14/RB1, 
17p13/TP53, 17q21/BRCA1) that have previously been 
shown to be altered in metastatic BC and BCBrM [5, 
26, 57]. Interestingly, prior work has illustrated that BC 
metastases are driven more by amplifications and dele-
tions than by somatic mutations or rearrangements [26], 
thus further exploration of the impact of CNV on BrM is 
warranted [70].

When comparing BrM to matched ECT in our study, 
hundreds of individual genes were found to be dif-
ferentially expressed, including some genes previ-
ously reported to be associated with BrM in BC, such 
as alphaB-crystallin (CRYAB) [76] and matrix metal-
loproteinase (MMP2) [54]. However, these differential 
genes did not contain the 4 genes (ARG2, SOX2, EGF, 
and NCAM1) previously identified in a larger cohort of 
matched BCBrM and primary BC as being up-regulated 
in BCBrM [27]. As it can be challenging to synthesize 
biology based on individual gene alterations, we elected 
to evaluate pathway alterations between BrM and ECT, 
yielding several interesting findings. Firstly, the oxi-
dative phosphorylation pathway has previously been 
reported to be increased in melanoma BrM compared to 
non-CNS melanoma tumor tissue, and melanoma BrM 
that exhibit high oxidative phosphorylation signals also 
exhibit altered metabolism pathways dependent on glu-
tamine [20]. Moreover, therapeutic targeting of the oxi-
dative phosphorylation pathway with IACS-10759 or of 
glutamine metabolism with glutaminase inhibitor CB839 
in mouse models of melanoma BrM improved survival 
and reduced BrM burden [20, 22]. This appears to be a 
BrM-specific phenomenon unrestricted from primary 
tumor type, opening the possibility of a pan-BrM thera-
peutic strategy [19–22, 79, 81]. In addition, CDK, mTOR, 
and DNA Repair pathways have also been previously 
shown to be enriched in BrM arising from BC and other 
solid tumors [7], and have become the focus of genomi-
cally-guided, prospective clinical trials in the BrM space 
(NCT03994796). Several clinical studies are also utiliz-
ing PARP inhibitors, either in combination with radiation 
and/or immunotherapy, to specifically treat patients with 
BCBrM (NCT04711824, NCT04837209, NCT05700721). 
Other groups have also illustrated the relative deficiency 
in DNA damage repair in BCBrM compared to ECT [11, 
66].

Finally, and consistent with prior work, ECT exhibited 
higher expression of immune cell pathways compared to 
BrM, illustrating that the CNS environment around BrM 
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is immunosuppressive [21, 27, 65]. Interestingly, when 
deconvoluting immune cell fractions, the only significant 
difference between ECT and BrM in our cohort was the 
dendritic cell population, with observed higher fractions 
in the BrM. A prior larger study by Giannoudis et al. of 
26 patients with paired BCBrM-primary BC samples 
reported decreased dendritic cells in BCBrM compared 
to primary BC, but also reported significant differences 
in other populations, such as reductions in natural killer 
cells and mast cells and increases in B cells and neutro-
phils, which we did not observe in our smaller cohort 
[27]. Of note, there is a dendritic cell therapy in devel-
opment for the treatment of BC leptomeningeal disease, 
with results anticipated in the next year (NCT05809752). 
Prior studies have demonstrated a reduction in tumor-
infiltrating lymphocytes (TILs) and a general shift 
towards a more "immune cold" phenotype in BCBrM rel-
ative to primary BC [27]. While we did not detect differ-
ences in immune cell populations by intrinsic or clinical 
subtypes, likely due to our small sample size, prior stud-
ies have reported higher levels of microglia/macrophages 
in HR + HER2− and higher CD8 + granzyme B + T cell 
and TILs in TNBC BrM relative to other clinical subtype 
BCBrM [27, 28].

While not the primary focus of our study, it should be 
highlighted that there were some observed differences in 
PAM50 inferred subtypes between matched FFPE and 
frozen BrM. Inferred intrinsic subtypes were discordant 
in 23% of cases between FFPE and frozen BrM, with all 
discordant cases involving the LumB subtype, predomi-
nantly from FFPE samples. To our knowledge this is the 
first study to compare intrinsic molecular subtypes in 
matched FFPE and frozen BCBrM, though other studies 
have conducted similar comparisons in other BC speci-
mens with similar results. A prior study assessed the 
TNBC molecular subtype concordance in 11 patients 
with RNA sequencing data on an Illumina HiSeq from 
matched FFPE and frozen TNBC primary tumor speci-
mens [35]. That study reported that 9 of the 11 patient 
pairs yielded TNBC subtype calls in both the FFPE and 
frozen paired specimens, with 33% (3/9) of those patients 
exhibiting discordance between the two [35], similar 
to our observed rate of 23% for PAM50 calls. A second 
study compared intrinsic subtypes based on Single Sam-
ple Predicator (SSP) calls in microarray results from 
matched FFPE and fresh frozen primary BC tumors of 
20 patients and found only a 5% (1/20) discordance rate 
between FFPE and frozen samples [56]. A third study 
specifically assessed PAM50-determined intrinsic sub-
types in matched FFPE and frozen primary early breast 
cancer specimens from 94 patients, and reported an 
overall discordance rate of 20% (19/94), including 27% 
(15/54) of LumA FFPE, 6% (1/18) of LumB FFPE, and 

33% (3/9) of HER2-E FFPE specimens being discordant 
with the matched frozen subtype call [46]. On a patient 
level, DNA alterations (somatic mutations and CNV) 
were generally similar between both preparation types, 
but there were individual cases where different muta-
tions, or lack thereof, were observed in one sample, but 
not the other. RNA expression data did vary, sometimes 
significantly, between matched FFPE and frozen BrM, 
including in some CR genes, which could have contrib-
uted to differences observed in inferred subtypes and 
immune cell fractions in these pairs. Additional work to 
further define these differences is warranted to ensure 
biologic results, not technical results, inform treatments 
and prognosis.

There are several limitations to our study which inform 
interpretation of the results. First, our cohort was small 
and from a single institution, thus underpowered to 
detect significant differences in some of the analyses. 
Given the need to further stratify by intrinsic subtypes 
and sample types with matched pairs, a larger, multi-
institutional study pooling data would be warranted. 
Further, one patient contributed two BrM samples and 
another contributed two ECT samples, though these 
were excluded in most analyses. Second, selection bias is 
applicable to our very select patient cohort: all patients 
had BrM; and specifically, likely had symptomatic and/or 
large BrM to warrant surgical removal. Thus, our results 
cannot be extrapolated to all patients with BC or BrM. 
Additionally, while our cohort had some clinical anno-
tation, the information was collected retrospectively 
through review of Duke medical records, thus some 
information for patients was incomplete. For example, 
it is unknown if for the patients with matched FFPE and 
frozen BrM, if the samples came from the same region 
of one tumor, or from multiple regions or even differ-
ent synchronous lesions. Treatment information prior 
to craniotomy was limited in our clinical records, thus 
we were unable to assess whether there was any associa-
tion between prior exposure to systemic therapies and 
any genomic alterations in the BCBrM. Additionally, the 
immune cell fraction analysis is sensitive to the choice of 
signature matrix. Limited sample size also contributed 
to inflated p values in the time-to-event analyses (Addi-
tional file 1: Supplementary Fig. S12), and these inflated 
statistics were also used as the basis for the GSEA.

Conclusions
Consistent with prior reports, in our cohort of 42 
patients with BCBrM from all subtypes, we observed 
subtype concordance in the majority of matched FFPE 
BrM and FFPE ECT specimens, with discordances nota-
bly involving mostly the LumB subtype. As anticipated, 
both ECT and BrM tissues from BC exhibited some 
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somatic alterations, with many more CNVs in genes, 
which varied by inferred subtype. Numerous genes and 
several pathways were differentially expressed between 
BrM and ECT, including MYC and E2F targets, oxidative 
phosphorylation, MTOR1 signaling, and DNA damage 
repair. The immune landscapes of ECT and BrM did not 
significantly differ between tissues or by subtype, aside 
from dendritic cells being overall higher in BrM. Each of 
these observations brings us one step closer to decipher-
ing the genomic and immunobiology of breast cancer 
brain metastases to lead us toward superior therapies for 
this unique, yet growing, patient population.
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