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Abstract 

Traumatic brain injury (TBI) occurs in 2–3 million Americans each year and is a leading cause of death and disability. 
Among the many physiological consequences of TBI, the hypothalamic pituitary axis (HPA) is particularly vulnerable, 
including a reduction in growth hormone (GH) and insulin-like growth factor (IGF-1). Clinical and preclinical 
supplementation of IGF-1 after TBI has exhibited beneficial effects. IGF-1 receptors are prominently observed 
in many tissues, including in the brain and in the gastrointestinal (GI) system. In addition to causing damage 
in the brain, TBI also induces GI system damage, including inflammation and alterations to intestinal permeability 
and the gut microbiome. The goal of this study was to assess the effects of systemic IGF-1 treatment in a rat model 
of TBI on GI outcomes. Because GI dysfunction has been linked to hippocampal dysfunction, we also examined 
proliferation and immature granule cells in the hippocampal dentate gyrus. 10-week-old male rats were treated 
with an intraperitoneal (i.p.) dose of IGF-1 at 4 and 24 h after lateral fluid percussion injury (FPI). At 3- and 35-days 
post-injury (DPI), gut permeability, gut dysmorphia, the fecal microbiome, and the hippocampus were assessed. 
FPI-induced permeability of the blood-gut-barrier, as measured by elevated gut metabolites in the blood, 
and this was prevented by the IGF-1 treatment. Gut dysmorphia and alterations to the microbiome were 
also observed after FPI and these effects were ameliorated by IGF-1, as was the increase in immature granule cells 
in the hippocampus. These findings suggest that IGF-1 can target gut dysfunction and damage after TBI, in addition 
to its role in influencing adult hippocampal neurogenesis.

Keywords  TBI, Gut microbiome, Gastrointestinal system, Fluid percussion injury (FPI), Hippocampus, Metabolite, 
Neurogenesis, Dentate gyrus, Newborn neurons, Growth hormone

†Lavanya Venkatasamy, Jaclyn Iannucci, and Aleksandr Pereverzev have 
contributed equally to this work.

*Correspondence:
Lee A. Shapiro
lshapiro@tamu.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-025-01998-x&domain=pdf
http://orcid.org/0000-0002-8368-1854


Page 2 of 14Venkatasamy et al. Acta Neuropathologica Communications           (2025) 13:90 

Background
Traumatic brain injury (TBI) occurs in 2–3 million 
Americans each year, and as many as 50 million 
people worldwide [1, 2]. TBI is a leading cause of death 
and disability [3, 4], and suffering a TBI is associated 
with an approximately 2.2–2.8-fold increase in 30-year 
mortality rate [5]. TBI is also associated with a number 
of chronic post-traumatic syndromes, including 
depression, cognitive impairment, and an increased 
susceptibility to chronic neurodegenerative disorders, 
such as post-traumatic epilepsy, Parkinson’s disease (PD), 
and Alzheimer’s disease (AD) [3, 6]. There are currently 
no effective treatments for mitigating post-traumatic 
syndromes, and identifying therapeutic mechanisms is of 
the utmost importance to improve health outcomes for 
the millions of people who experience a TBI each year, 
and are living with the consequences [5].

Among the myriad of physiological consequences to 
a TBI, the hypothalamic–pituitary–adrenal axis (HPA) 
is particularly vulnerable. The HPA regulates hormonal 
release and endocrine function, and HPA dysregulation 
after TBI has been identified in clinical [7–13] and 
preclinical studies [14–16]. This pathology can manifest 
as abnormal hormone production [17–20], including 
disruption in growth hormone (GH) released from 
the pituitary gland [21–23] and reduced insulin-like 
growth factor-1 (IGF-1) that is primarily released by 
the liver in response to endocrine signals. Importantly, 
these physiological consequences may play a role in TBI 
pathogenesis [10, 24, 25], and in a Phase II clinical trial, 
supplementing IGF-1 after TBI alone, or in combination 
with GH, improved weight gain, nutritional status, and 
other metabolic parameters in moderate-to-severe TBI 
patients in the first two weeks after injury [26–28].

IGF-1 is a 7.5  kDa peptide hormone that plays a 
major role in cell growth, differentiation, and repair, 
including after central nervous system (CNS) trauma 
[29–34]. Reduced serum IGF-1 has been reported in 
patients during the first week after TBI [35, 36] and 
more chronically after injury [37, 38]. Reduced levels 
of IGF binding proteins (IGFBP), which bind to and 
stabilize IGF-1 for transport in the serum, have also been 
identified after TBI [39]. Interestingly, higher levels of 
serum IGF-1 after TBI was predictive of white matter 
recovery and memory improvement after injury [40], and 
low serum IGF-1 in children was associated with worse 
outcomes [41].

Preclinical TBI studies also demonstrate reduced IGF-1 
after TBI. Following TBI in adolescent rats, serum IGF-1 
was decreased between 1 week and 1 month after injury 
[42], and this reduction was correlated with impaired 

cognitive function [43]. In another study, plasma IGF-1 
was reduced 3  weeks after controlled cortical impact 
(CCI) in mice [44]. Thus, IGF-1 deficiency after clinical 
and preclinical TBI appears to be associated with 
detrimental neuropathological  outcomes. Accordingly, 
IGF-1 treatment for 14  days elevated serum IGF-1, and 
the elevations were associated with increased survival 
and a higher percentage of patients achieving better 
outcome scores 6  months after injury [26], and this is 
supported by preclinical studies [45–47]. While side 
effects such as hypoglycemia may limit the therapeutic 
potential of IGF-1 [48], identification of novel targets 
could enable studies to overcome this limitation.

After TBI, exogenous IGF-1 may convey benefit in the 
periphery, as well as in the CNS. In the periphery, the 
gastrointestinal (GI) tract is damaged after TBI, including 
altered intestinal permeability [49–51], inflammation [51, 
52], and alterations to the microbiome [52–61]. IGF-1 
receptors are prominently expressed in the gut where 
they are involved in regulating intestinal epithelial stem 
cell (IESC) function [62, 63]. The GI system is increasingly 
recognized as playing a major role in mediating 
neuropathology and neurological dysfunction, and 
IGF-1 may be involved in the GI response to injury [62, 
64–70], including inflammation induced gut permeability 
[71, 72]. Importantly, gut dysfunction has been shown 
to worsen the neurological deficits associated with 
TBI [73]. Therefore, the present study investigated the 
hypothesis that systemic IGF-1 treatment at 4 and 24 h 
after FPI would improve GI permeability, dysmorphia, 
and alterations to gut microbiome. Because TBI is known 
to alter the number and morphology of immature dentate 
granule neurons [74–77], and because IGF-1 has been 
previously shown to alter hippocampal neurogenesis 
in the context of TBI [46], this study also examined 
immature neurons in the hippocampus after FPI.

Results
FPI‑induced gut permeability at 3‑days post‑FPI 
is attenuated by IGF‑1
GI permeability was assessed at 3  days post injury 
(DPI)  by measuring serum levels of LPS, iFABP, and 
Mucin-2 (Muc-2), elevations of which are indicative 
of increased intestinal permeability and gut barrier 
damage [78–80]. LPS is an endotoxin released by 
Gram-negative bacteria, and the concentration of LPS 
has been reported to be increased in plasma due to 
an impaired gut barrier after TBI [73, 81]. iFABP and 
muc-2 are major components of the mucosal layer, 
and they can be released into circulation when there 
is damage to the mucosal layer [82, 83]. There was a 
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significant increase in the serum concentrations of LPS 
(p < 0.0001), iFABP (p < 0.0001), and Muc-2 (p < 0.0001) in 
the FPI + Veh group compared to sham, all of which were 
significantly decreased to sham levels in the FPI + IGF1 
group (p < 0.0001, p < 0.001, p < 0.001, respectively vs. 
FPI + Veh) (Fig. 1a–c). These data show intestinal barrier 
permeability after FPI, and this can be mitigated by IGF-1 
treatment.

Gut dysmorphia after FPI is diminished by IGF‑1
To assess gut morphology, the ileum and proximal 
colon were analyzed (Fig.  2, Supp. Fig. Q1) using H&E 
staining at 3 and 35 DPI. Qualitatively, at 3 and 35 DPI 
the intestines of the FPI + Veh rats exhibited clear 
disruption relative to sham rats, while the FPI + IGF-1 
treated rats resembled the shams. In the FPI + Veh rats, 
there appeared to be fewer villi in the ileum, and many of 
the villi appeared short and stubby, and this observation 
was more pronounced at 35 DPI. (Fig.  2a–f, k–p). 
Quantitative analysis of the villus length:width ratio and 
the number of crypts per villus were consistent with the 
qualitative observations. No significant differences in the 
ileum were observed at 3 DPI the villus (Fig. 2g, h), but at 
35 DPI, FPI significantly reduced the length:width ratio 

of the ileum villi (p < 0.05) and significantly increased the 
number of crypts per villus (p < 0.05), compared to sham 
rats (Fig. 2o, p). Compared to FPI + Veh, IGF-1 treatment 
after FPI resulted in a significant increase in the 
length:width ratio (p < 0.05), and a significant decrease 
in the number of crypts per villus (p < 0.05), such that 
the appearance was very similar to the Sham + Veh rats 
(Fig.  2o, p). The average lengths and widths of the villi 
are also provided (Table  1). Similar to the ileum, in the 
proximal colon there were no significant differences 
identified at 3 DPI (Supp. Fig.  1a,b), but at 35 DPI, FPI 
significantly reduced inter-crypt mucosal length:width 
ratio (p < 0.01) and increased the number of crypts per 
inter-crypt mucosa (p < 0.01). As with the ileum, IGF-1 
significantly prevented this FPI-induced gut dysmorphia, 
such that they appeared more like shams (p < 0.01, 
p < 0.01, respectively) (Supp. Fig. 1c, d).

Goblet cells in the gut epithelium produce the intestinal 
mucus, of which muc-2 is  a major structural component 
[83, 84]. Quantitative analysis of the number goblet 
cells from PAS-stained tissue in the ileum at 3 and 35 
DPI (Fig.  3a–c) revealed that FPI caused a significant 
decrease in the number of goblet cells at 3 DPI (p < 0.05 
vs. Sham + Veh), and this was ameliorated by the IGF-1 

Fig. 1  IGF-1 treatment rescues early FPI-induced gut permeability. Blood-gut barrier permeability was assessed at 3 DPI by measuring serum 
levels of LPS, iFABP and Muc-2 [78–80]. In a, there was a significant increase in the serum concentration of LPS in the FPI + Veh rats (p < 0.0001 vs. 
Sham + Veh) that was significantly ameliorated by IGF-1 treatment (p < 0.001 vs. TBI + Veh). In b, levels of serum iFABP were significantly elevated 
in FPI + Veh as compared to the Sham + Veh rats (p < 0.0001), and this increase was significantly attenuated in the FPI + IGF-1 rats (p < 0.001 vs. 
FPI + Veh). In c, the concentration of Muc-2 (520 kD) was significantly elevated in FPI + Veh rats compared to the Sham + Veh rats (p < 0.0001) 
and reduced in FPI + IGF-1 rats (p < 0.001 vs. FPI + Veh). These data suggest that the blood-gut barrier and the mucus barrier may deteriorate 
after FPI and this is prevented by IGF-1. Data are represented as Mean ± SEM; n = 8–10 per group. Note, 3 rats in the FPI + IGF-1 group were omitted 
from Mucin-2 analysis due to limited serum availability. ***p < 0.001; ****p < 0.0001
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treatment (p < 0.01 vs. FPI + Veh; Fig.  3d). At 35 DPI a 
significant increase in the number of goblet cells per crypt 
following IGF-1 treatment was also observed (p < 0.05 vs. 
Sham + Veh, p < 0.01 vs. FPI + Veh; Fig.  3e), suggesting an 
influence of IGF-1 on goblet cells and mucus production. 
To determine the influence of FPI on proliferating 
cells in the ileum, Ki67-labeled cells were quantified. 
(Fig.  3f–h). Although no significant differences were 
observed at 3 DPI, IGF-1 treatment after FPI did result in 
a significant decrease in Ki67 + cells in the ileum (p < 0.01 

vs. Sham + Veh; Fig.  3i). At 35 DPI, a significant increase 
in Ki67 + cells was observed in FPI + Veh rats (p < 0.05 vs. 
Sham + Veh), and this was significantly reduced by IGF-1 
treatment (p < 0.05 vs. FPI + Veh; Fig. 3j). These data suggest 
that IGF-1 may have a protective effect on the intestinal 
mucosa, specifically the goblet cells, whereas it had the 
opposite effect on progenitor cells in the crypt after FPI.

Fig. 2  IGF-1 treatment reduces FPI-induced chronic gut dysmorphia. To assess gut morphology, villi and crypts were analyzed in the ileum 
using H&E staining at 3 (a–f) and 35 (j–o) DPI. Note the normal appearance of the villi and crypts in sham rats (black arrowhead; a,b). Also note 
that at the 3 DPI timepoint, the villi are beginning to show a rounded stumpy appearance (green arrowhead; c,d), but the quantitative results 
are not significant at this time point (g, h). These morphological differences evolve over time so that they appear more pronounced at 35 DPI, 
such that they have a significantly reduced length:width ratio (p < 0.01 vs. Sham + Veh), and this was significantly increased by IGF-1 treatment 
(p < 0.01) (o). Importantly, the villi from the IGF-1 treated rats appears much more sham-like (e,f ). In p, the number of crypts per villus in the ileum 
was increased after FPI (p < 0.05 vs. Sham + Veh), and IGF-1 treatment after FPI significantly reduced this effect (p < 0.05). For all rats, 3 slides were 
assessed, with 3 sections per slide measured. Scale bar in e,n = 10 µm for A,C,E,J,L,N; scale bar in f,o = 5 µm for B,D,F,L,M,O. Data are represented 
as Mean ± SEM. N for 3 DPI: 4 Sham + Veh, 5 FPI + Veh, 5 FPI + IGF1. N for 35 DPI: 3 Sham + Veh, 3 FPI + Veh, 4 FPI + IGF1. *p < 0.05; **p < 0.01



Page 5 of 14Venkatasamy et al. Acta Neuropathologica Communications           (2025) 13:90 	

Influence of IGF‑1 on immature neurons and proliferative 
cells in the hippocampus after FPI
Because of the known effects of IGF-1 on the 
hippocampus, including adult hippocampal 
neurogenesis [46], this study examined immature 
neurons and Ki67 cells in the hippocampus at 3 DPI. 
Consistent with previous studies indicating that 
FPI induces early increases in adult hippocampal 
neurogenesis [74, 85], the results show that FPI 
resulted in a strong trend towards an increased 
number of DCX-labeled immature neurons in the 
dentate gyrus (p = 0.051, NS). This increase was not 
observed in the IGF-1-treated FPI group (Fig.  4a–c). 
It is pertinent to note that increased neurogenesis 
after precipitating brain injuries can include aberrant 
growth and integration of the newborn neurons [77, 
86], resulting in dysfunctional hippocampal circuitry 
[77]. Thus, it is possible that the increased number 
of immature neurons in the dentate gyrus might 
contribute to the impaired hippocampal-dependent 
cognitive dysfunction that has been reported after FPI 
[87]. Examination of proliferating Ki67 + cells at 3 DPI 
yielded no significant differences in the dentate gyrus 
(Fig.  4e–h). These results suggest that FPI might be 
enhancing immature neuron survival, or increasing 
the rate of neurogenesis, rather than increasing the 
number of progenitor cells in the hippocampus at this 
timepoint.

Altered gut microbiome composition after TBI 
is normalized by IGF‑1 treatment
Gut microbiome alterations have been observed acutely 
and chronically in clinical [54, 57] and preclinical models 
[59] of TBI, and have been linked to cognitive dysfunction 
[88, 89]. Therefore, fecal samples were collected at 
pre- and at  35 DPI, and analyzed via 16S sequencing. 
Changes to the Firmicutes to Bacteroidetes ratio (F:B) 
is an indicator of gut health [90], and changes to the 

abundance of major phyla can shift the F:B ratio [54, 
56]. Here, the F:B ratio was significantly increased in the 
IGF-1 treated rats compared to the FPI + Veh (p < 0.05) 
(Fig. 5a). Further examination of Bacteroidetes levels after 
injury revealed a trend towards decreased Bacteroidetes 
in FPI + Veh rats compared to Sham + Veh (p = 0.057, NS) 
and a significant increase in Bacteroidetes after IGF-1 
treatment (p < 0.05 vs. FPI + Veh) (Fig.  5b). Importantly, 
variations in bacterial phyla such as Bacteroidetes 
and Firmicutes have been associated with cognitive 
dysfunction [91–96], and the results from the current 
study show that FPI increased the relative abundance of 
Bacteroidetes. While there were no significant changes 
in Firmicutes (Fig. 5c), Firmicutes includes Lactobacillus 
species that are probiotic. At the species level, the 
abundance of Lactobacillus was significantly decreased in 
the FPI + Veh rats 35 DPI compared to baseline (p < 0.05), 
while there was no difference identified in either the 
Sham + Veh or IGF-1 treated groups when compared to 
baseline (Fig.  5d). Furthermore, using the partial Least-
Squares Discriminant Analysis (PLS-DA), a multivariate 
dimensionality-reduction, to assess the major phyla 
present, the FPI + IGF rats were found to cluster more 
closely with the Sham + Veh, while the FPI + Veh 
exhibited greater variability (Fig. 5e). Thus, FPI shifts the 
gut microbiome population, and IGF-1 mitigates these 
effects.

Discussion
The results from this study demonstrate early and 
chronic changes to gut permeability, morphology, and 
the fecal microbiome after FPI, and an increase in the 
number of immature dentate granule cells. Clinical and 
preclinical TBI studies have demonstrated alterations to 
gut structure, function, and microbiome composition 
[53–59, 97–105]. GI dysfunction has been linked 
to neurobehavioral impairment, neuropsychiatric 
conditions, and neurodegenerative disease [106], and 

Table 1  Average villus length and width at 3 and 35 DPI

H&E staining was used to assess gut dysmorphia in the ileum at 3 and 35 DPI, and villus length and width were measured in µm. Values are expressed as Mean ± SD

Villus Length

Treatment group Sham + Veh FPI + Veh FPI + IGF1

3 DPI 214.4 ± 43.32 164.1 ± 12.55 210.7 ± 11.79

35 DPI 203.4 ± 8.43 171.1 ± 23.80 222.0 ± 29.00

Villus width

Treatment group Sham + Veh FPI + Veh FPI + IGF1

3 DPI 116.0 ± 11.30 114.0 ± 23.34 98.03 ± 36.08

35 DPI 106.0 ± 10.98 204.4 ± 46.65 89.36 ± 15.94
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Fig. 3  Influence of FPI and IGF-1 on goblet cells and intestinal epithelial stem cells (IESC). PAS staining was used to assess the number of goblet 
cells per crypt in the ileum at 3 (a–c) and 35 DPI. Quantitative analysis revealed that FPI significantly reduced the number of goblet cells 
per crypt at 3 DPI (d) and 35 DPI (e) and this was increased by IGF-1 treatment. Proliferating IESCs in the crypts were determined by quantifying 
Ki67 + labeled cells at 3 (i) and 35 (j) DPI. In f–h, representative micrographs of Ki67 + staining in the crypts of the ileum at 35 DPI, with areas 
designated by the white arrow enlarged in the corresponding inset. At 3 DPI (i), the FPI + Veh showed a non-significant reduction (p = 0.2152, NS) 
in the number of Ki67 + cells in the crypts. The FPI + IGF-1 group exhibited a significant reduction (p < 0.01 vs. to Sham + Veh) in the Ki67 + cells 
in the crypts. Conversely at 35 DPI (j), FPI significantly increased the number of Ki67 + cells, and this was significantly reduced by IGF-1 treatment. 
This suggests that FPI resulted in a delayed increase in IESC proliferation, whereas IGF-1 reduced the number of Ki67 + cells at both timepoints 
examined. For all rats, 3 slides were assessed, with 3 sections per slide measured. Data are represented as Mean ± SEM; N for 3 DPI: 4 Sham + Veh, 5 
FPI + Veh, 5 FPI + IGF1. N for 35 DPI: 3 Sham + Veh, 3 FPI + Veh, 4 FPI + IGF1. *p < 0.05; **p < 0.01. Scale bar in a = 5 µm; scale bar in b,c = 10 µm; scale 
bar in h = 10 µm for f–h 

Fig. 4  IGF-1 ameliorates the FPI-induced increase in immature neurons in the adult hippocampus. Immature neurons in the hippocampal 
dentate gyrus were assessed by stereological quantification of the number of DCX-labeled cells at 3 DPI (a–c). The results show that FPI increased 
the number of DCX + cells (p = 0.051), and this was mitigated by IGF-1 treatment (d). The number of proliferative cells in the dentate gyrus (DG) 
was assessed by quantifying the number of Ki67-labeled cells (e–g) in the hilus (h), granule cell layer (GCL), and subgranular zone (SGZ). No 
significant differences in the number of Ki67 + cells in the hippocampus were identified at 3 DPI (h). Scale bar in c = 20 µm for (a–c). Data are 
represented as Mean ± SEM; n = 3–4 per group
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improving gut structure and function may underlie 
functional CNS improvements [107]. Increased gut 
permeability and elevated plasma LPS have been 
shown to be associated with cognitive decline [108, 
109]. That IGF-1 treatment after FPI ameliorated the 
elevated plasma iFABP, LPS, and Muc-2, suggests that 
IGF-1 may be acting on the blood-gut-barrier, as has 
been previously described [71, 110–112]. The IGF-1 
treatment may have also acted on the protective mucous 
barrier [113] because the FPI-induced decrease in goblet 
cells after injury was mitigated by IGF-1 treatment. 
It was surprising that IGF-1 reduced the number of 
Ki67 + progenitor cells  in the intestinal crypts, despite 
its positive influence on permeability, the goblet cells, 
and dysmorphia. It is possible that FPI altered enterocyte 
survival or influenced the types of cellular offspring 
being produced by the progenitor cells, accounting for 
the goblet cell loss and dysmorphia. Future studies are 
needed to more fully examine the cellular make-up, 

turnover rates, and function of the intestines in response 
to injury and treatments. Considering the fact that TBI 
results in dysmotility and gastroparesis in the clinic [99, 
100, 114] and animal models [115], the effects of IGF-1 
on gut motility also need to be explored.

Numerous clinical and preclinical studies support the 
notion that gut dysmorphia can be targeted to improve 
neurological function. In multiple sclerosis, treating 
the gut improved neurobehavioral performance and 
prevented the loss of myelin [116–118]. In a mouse 
model of obesity, β-glucan administered into the 
lower GI tract attenuates colonic barrier dysfunction, 
inflammation, and cognitive and affective impairment 
[119]. In animal models of PD and AD, restoring gut 
structure and function mitigated the genetically induced 
neurodegeneration and neurobehavioral impairment 
[120–122]. Furthermore, targeting stroke-induced 
intestinal dysfunction using IESCs was beneficial to 
post-stroke outcomes [123]. Therefore, the gut appears 

Fig. 5  Gut dysbiosis after FPI is improved by IGF-1. Gut bacterial composition was assessed from fecal samples at 35 DPI. The ratio of Firmicutes 
to Bacteroidetes (F:B), an estimate of gut health, was significantly increased in the FPI + IGF-1 treated rats compared to the FPI + Veh rats 
(p < 0.05) (a). The relative count of Bacteriodetes was increased in FPI + Veh rats (p = 0.057, NS vs. Sham + Veh), and this was significantly reduced 
with IGF-1 treatment (p < 0.05 vs. FPI + Veh) (b). There were no significant changes identified in Firmicutes (c). In d, the abundance of Lactobacillus 
was significantly decreased in the FPI + Veh rats at 35 DPI compared to baseline (p < 0.05), while there were no significant differences identified 
at 35 DPI in either the Sham + Veh or FPI + IGF-1 groups. In e, principal component analysis (PCA) using the partial Least-Squares Discriminant 
Analysis (PLS-DA shows that the major phyla for Sham + Veh and FPI + IGF-1 rats cluster more closely together than do the FPI + Veh. In f, heat map 
expression levels further demonstrate that FPI + Veh rats have an altered gut bacterial repertoire, compared to Sham + Veh, and that the FPI + IGF-1 
rats are more similar to sham rats. Data are represented as Mean ± SEM; n = 4–5 per group. *p < 0.05; **p < 0.01
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to be an important therapeutic target in TBI and other 
neurological disorders.

Increased neurogenesis after brain insults has been 
shown to result in aberrant growth and integration 
into hippocampal circuitry, resulting in impaired 
hippocampal function [74, 77, 85, 124]. In the current 
study, FPI resulted in an increased number of DCX-
labeled immature neurons in the hippocampus at 3 DPI, 
and this increase was partially ameliorated by IGF-1 
treatment. This is consistent with previous studies in 
different models of TBI that have demonstrated elevated 
adult hippocampal neurogenesis after TBI [125, 126]. 
While FPI did increase immature neurons at 3 DPI, no 
such change in Ki67 proliferating cells were observed 
in the dentate gyrus at 3 DPI. There are several possible 
explanations for this observation. Although the number 
of proliferating cells was not increased by FPI, it is 
possible that the rate of proliferation was increased, or 
that  the generation of immature neurons as opposed to 
astrocytes is increased, as has been previously described 
[76, 126]. Consistent with this possibility, enhanced 
proliferation after TBI has been recorded within 1 and 
14 DPI [76, 127–129]. It is possible that had earlier or 
later post-FPI timepoints  been examined, the results 
may have been different.  Another possibility is that FPI 
promotes survival of immature neurons, rather than 
increased proliferation, yielding a net increase in the 
number of DCX-labeled immature neurons, but not in 
Ki67 + cells. Consistent with this possibility, TBI has 
been previously shown to enhance both the survival 
and dendritic outgrowth of immature neurons in the 
adult hippocampus [74, 75, 85, 125]. Importantly, IGF-
1has been previously shown to normalize TBI-induced 
alterations to adult hippocampal neurogenesis [46], 
consistent with the current study.

While the current findings have intriguing therapeutic 
implications for TBI, there are several limitations. In 
addition to obvious endocrine differences, there are 
documented sex differences in the response to TBI, 
in both clinical studies [130–135] and animal models 
[136–140]. This includes sex differences in the effects 
on the gut and the influence of gut microbiota on 
recovery after injury [141]. Because this study only 
looked at male rats, it is unclear what the differences 
would be in female rats. Furthermore, the use of 
IGF-1 in humans is limited clinically as it can cause 
hypoglycemia in non-diabetic individuals [48, 142], and 
such metabolic effects of IGF-1 treatment after FPI may 
have influenced the observed results. Nevertheless, 
this and other preclinical and clinical studies support 
the benefit of IGF-1 after FPI, and the current study 
establishes the possibility that IGF-1 signaling in the 
gut can be targeted to treat post-traumatic outcomes. 

Future studies can more selectively target IGF-1 
signaling components to achieve therapeutic effects 
without toxic side effects.

In conclusion, the current findings highlight the 
benefit of systemic IGF-1 treatment after FPI in rats 
for improving gut permeability, dysmorphia, altered 
microbiome, and normalizing the FPI-induced increase 
in adult hippocampal neurogenesis. Considering the 
growing recognition of the importance of gut function 
on neurological outcomes, as well as the multitude of 
studies indicating gut dysfunction after TBI, these 
findings support further interrogation of IGF-1 
signaling after TBI. The results also suggest the exciting 
possibility that gut dysmorphia and dysfunction may be 
novel therapeutic targets for improving TBI outcomes. 
Future studies are needed to more fully explore these 
possibilities.

Methods
Animals
10-week-old male Sprague–Dawley rats (Total = 36 
rats) were used for this study. At one week prior to FPI 
or sham, rats were housed in individual cages under 
controlled environment with a 12-h light dark cycle (light 
on at 6:00 and light off at 18:00), with food and water 
continuously available and maintained on a standard diet 
(Envigo # 8604) for the duration of the experiment. Rats 
were randomly assigned into three groups: Sham + Veh, 
FPI + Veh, and FPI + IGF-1. Rats were administered 
with vehicle (Veh) or recombinant human (rh)IGF-1 
(R&D Systems #291-G1-01  M) via i.p. injection (200  µg 
in 500  µL Phosphate Buffered Saline (PBS)) at 4  h and 
24  h post-FPI. This dose was selected based on reports 
showing that it improved intestinal and neurobehavioral 
outcomes in a rat stroke model [110]. All Veh rats were 
given equal volume PBS in place of IGF-1. A subset of rats 
from each treatment group (n = 7–10 per group) were 
sacrificed at 3 DPI for assessment of gut pathology and 
permeability. Additional rats (n = 3–4 per group) were 
sacrificed at 35 DPI for assessment of gut morphology. 
All rat experimental protocols were approved by the 
Institutional Animal Care and Use Committee (IACUC) 
of Texas A&M Health Science Center (AUP #2010–0140) 
(Fig. 6).

Fluid percussion injury (FPI)
A mild-to-moderate lateral FPI was used as a model of 
TBI, as previously described [74, 86, 143]. Rats were 
initially anesthetized in an induction chamber (pre-
filled with 4% isoflurane in 100% O2) and later the level 
of the isoflurane was reduced to 2% for maintenance. 
Under anesthesia, the hair on the top of the rat’s head 
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was trimmed as close to the skin as possible. Rats were 
placed in a stereotaxic instrument (Stoelting, Illinois) 
and a 2-mm burr hole was drilled on the skull using 
drill bits (Stoelting, Illinois) over the left parietal cortex, 
at -2 mm antero-posterior to bregma and 3 mm medio-
lateral to midline [144], ensuring that dura remained 
intact. A female Luer-Lok cannula was secured to the 
skull with dental cement (PlasticOne), then rats were 
connected to the fluid percussion instrument (Custom 
Design and Fabrication, Richmond, VA; Model 01-B) via 
male Luer-Lok attachment. The rat was placed on its side 
and breathing was monitored. Once a normal breathing 
pattern resumed, but prior to the rat regaining complete 
consciousness, the pendulum of the FPI device was 
released to cause a single ~ 2  atm pressure pulse injury, 
as measured by a digital Oscilloscope (Tenma model # 
728395), connected to a signal transducer hooked in-line 
between the fluid percussion cylinder and the syringe. 
Sham animals all  underwent the same procedures, 
but the pendulum was  not released so no fluid pulse 
was  delivered to the intact  dura. Rats were monitored 
closely after injury, no death or loss of consciousness 
were observed, consistent with a mild-to-moderate 
injury.

Gut permeability ELISA assays
Serum was collected via saphenous draw at 3  days 
post-FPI from 26 rats (7 Sham + Veh, 9 FPI + Veh, 10 
FPI + IGF1). ELISA assays were used to determine 

levels of surrogate measures of gut permeability: 
lipopolysaccharide (LPS) (Mybiosources, MBS268498; 
Detection range: 15.6  ng/mL–1000  ng/mL), mucin-2 
(Muc-2) (Mybiosources, MBS2019254; Detection range: 
0.312–20  ng/mL), and intestinal fatty acid binding 
protein (iFABP) (Mybiosources, MBS3807789; Detection 
range: 1–3200  pg/mL). The procedure was performed 
according to the manufacturer’s directions. Plates were 
read on a microplate reader (450  nm; TECAN, VT) 
and the concentration of the samples was obtained by 
interpolation from the standard curve.

Gut histology
At 3 or 35 DPI, a portion of the distal ileum and proximal 
colon were dissected, fixed in 4% PFA, and embedded 
in paraffin. Paraffin sections  (10  μm) were collected on 
glass slides and analyzed for immunohistochemistry, 
hematoxylin and eosin (H&E), and Periodic acid-Schiff 
(PAS) staining [145]. For H&E and PAS staining, sections 
were photographed at 20 × magnification with the VS200 
slide scanner (Olympus) and scored by a rater blind to 
the subject’s condition. The length was measured from 
the tip of the villi to the base at the crypt, and the width 
was measured at the midpoint of the height [146]. The 
number of crypts at the base of each villus was also 
counted, as previously described [110]. A total of three 
slides, with 3 ileum or colon slices per slide were used for 
each rat. Four positions were selected for each image and 
3 villi were measured from each position. All analysis was 

Fig. 6  Experimental Design for the study. Schematic diagram depicting the experimental design showing that rats received either sham or FPI 
at 10-weeks-of age, followed by IGF-1 or vehicle at 4 and 24 hours after surgery. Tissue was then collected for analysis at either 3 or 35 days 
post injury (DPI)
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done on the OlyVia software using the line measurement 
tool. The data presented are an average of these 
measurements. At 3 DPI, measurements were done for 
14 rats (4 Sham + Veh, 5 FPI + Veh, 5 FPI + IGF1). At 35 
DPI, assessments were taken from 10 rats (3 Sham + Veh, 
3 FPI + Veh, 4 FPI + IGF1).

Gut immunohistochemistry
Immunofluorescence for KI67  was performed as 
previously described [123]. Briefly, a portion of the ileum 
was embedded in paraffin (Leica Microsystems, Buffalo 
Grove, IL, USA) and stored at room temperature until 
use. Paraffin sections  (10  µm) were collected on glass 
slides and incubated in blocking buffer (5%BSA + 0.1% 
Triton X-100 in PBS, pH 7.4) for 20  min at room 
temperature. Sections were incubated overnight at 4 °C 
with primary rabbit anti-Ki67 (1:250, Abcam, ab16667). 
Secondary antibody (Alexa Fluor 555 goat anti-rabbit, 
Invitrogen) was used at 1:1000 dilution for 1  h at room 
temperature. Sections were washed three times in PBS, 
and cover slipped with mounting media containing the 
nuclear dye DAPI (Fluoroshield, Abcam, ab228549). 
Sections were imaged using a fluorescent microscope 
(Olympus, Bethlehem, PA). Gut sections probed for Ki67 
immunohistochemistry were imaged and coded and then 
scored by a rater blinded to the experimental condition. 
Slides were scored using a predefined scale from 1 to 5 
according to staining localization and brightness along 
the crypt cells. A minimum of 3 sections were scored for 
each rat, and the data presented are an average of these 3 
sections. At 3 DPI, measurements were done for 14 rats 
(4 Sham + Veh, 5 FPI + Veh, 5 FPI + IGF1). At 35 DPI, 
assessments were taken from 10 rats (3 Sham + Veh, 3 
FPI + Veh, 4 FPI + IGF1).

Microbiome analysis
Microbiome analysis was conducted using fecal samples 
collected at baseline (pre-FPI) and 35 days after FPI from 
12 rats (3 Sham + Veh, 3 FPI + Veh, 6 FPI + IGF1). The 
fecal samples were frozen immediately after collection 
and stored at − 80  °C until shipping to Diversigen (New 
Brighton, MN). Briefly, DNA was extracted with Qiagen’s 
DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD) 
automated for high throughput on QiaCube HT (Qiagen, 
Germantown, MD), with bead beating in Qiagen 
Powerbead Pro plates (Qiagen, Germantown, MD) 
and quantified with Qiant-iT Picogreen dsDNA Assay 
(Invitrogen, Carlsbad, CA). Libraries were prepared with 
a procedure adapted from the Nextera Library Prep kit 
(Illumina, San Diego, CA) and sequenced on an Illumina 
NovaSeq using single-end 1 × 100 reads (Illumina, San 
Diego, CA). DNA sequences were filtered for low quality 
(Q-Score < 30) and length (< 50), and adapter sequences 

were trimmed using cutadapt. Fastq files were converted 
into a single fasta using shi7. Sequences were trimmed to 
a maximum length of 100  bp prior to alignment. DNA 
sequences were aligned to a curated database containing 
all representative genomes in RefSeq for bacteria with 
additional manually curated strains. Alignments were 
made at 97% identity against all reference genomes 
(Diversigen’s Venti database) using fully gapped 
alignment with BURST. Ties were broken by minimizing 
the overall number of unique Operational Taxonomic 
Units (OTUs). For taxonomy assignment, each input 
sequence was assigned to the lowest common ancestor 
that was consistent across at least 80% of all reference 
sequences tied for best hit. The number of counts for each 
out was normalized to the average genome length. OTUs 
accounting for less than one millionth of all species-level 
markers and those with less than 0.01% of their unique 
genome regions covered (and < 1% of the whole genome) 
were discarded. Absolute count data was then used to 
calculate Firmicutes: Bacteroidetes ratio, and abundance 
of specific bacterial groups was evaluated.

Immunohistochemistry for hippocampal proliferation 
and neurogenesis
Because IGF-1 is known to influence numerous cell types, 
it is possible that the i.p. injections could have passed 
through the blood–brain barrier and influenced dividing 
cells in the central nervous system. Therefore, this study 
also examined the hippocampus, a region of the adult 
rat brain in which ongoing neurogenesis is observed. 
Proliferating cells in the dentate gyrus were examined 
as 3 DPI, as were the number of immature neurons in 
the dentate gyrus using doublecortin (DCX), a marker 
of immature neurons. Immunohistochemistry for DCX 
and Ki67 were performed as previously described [74, 
143, 147, 148]. Briefly, rats were anesthetized with Fatal 
Plus (Sodium Pentobarbital; 52  mg/kg, administered 
i.p.) and transcardially perfused with phosphate buffered 
saline (PBS) through the left ventricle until the blood ran 
clear. This was followed by 4% paraformaldehyde (PFA) 
through the left ventricle. All brains were allowed to 
postfix in the skull for 24 h in PFA, after which they were 
extracted and fixed for an additional 24  h in 4% PFA. 
Fixed brains were cut into 44-µm thick serial sections 
with a freezing microtome (American Optical Corp; 
Model #860). Slices were first incubated in a 1X Citrate 
Buffer (Millipore Sigma) for 1  h at 45 °C. Slices were 
then washed and stained with goat anti-DCX antibody 
(Santa Cruz Inc. USA) or rabbit anti-Ki67 (1:250, Abcam, 
ab16667) overnight at room temperature, rotating. 
After overnight incubation, slices were washed and 
stained with a secondary biotinylated goat anti-Rabbit 
IgG (Alexaflour-555; 1:200) (Ki67) or secondary donkey 
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anti-Goat IgG (AlexFlour-555; 1:200) (DCX). Slices 
were mounted and cover-slipped with antifade reagent 
containing DAPI (Vector Laboratories #H-1200-10).

Imaging for all immunohistochemistry was done on 
a fluorescent microscope (Olympus, Bethlehem, PA). 
Unbiased stereology-based analysis was used to quantify 
cells positive for DCX in the hippocampus, as previously 
described [74, 147, 148]. Sections (~ every 260–350  μm 
apart) containing the dorsal hippocampus (Bregma 
− 1.34 through − 2.80) were selected for analysis. Analysis 
of DCX + cells was performed in the ipsilateral infra- and 
supra-pyramidal blades of the dentate gyrus granule cell 
layer/subgranular zone. Total Ki67 + cells in the entire 
dentate gyrus were manually counted, and all counts were 
conducted by raters blind to experimental conditions. A 
minimum of 3 left (ipsilateral to injury) hippocampi were 
counted per animal, per antibody, within the stereological 
coordinates indicated above. Analysis was completed for 
14 rats (4 Sham + Veh, 5 FPI + Veh, 5 FPI + IGF1).

Statistical analysis
Prior to statistical analysis, data were analyzed for 
outliers using the ROUT algorithm in GraphPad Prism, 
Q = 1% [147, 149], and outliers were removed from 
all associated measurements. Data for all groups were 
analyzed by one-way analysis of variance (ANOVA) with 
comparisons between groups performed using post-hoc 
Tukey test. All statistical analysis was performed using 
GraphPad Prism (Version 9.0; GraphPad). Significance 
for all tests was set at p < 0.05 and a trend was considered 
at 0.10 ≥ p > 0.05.
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