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Abstract 

α-Synuclein (aSyn) accumulation within the extra-nigral neuronal populations in the brainstem, including the gigan-
tocellular nuclei (GRN/Gi) of reticular formation, is a recognized feature during the prodromal phase of Parkinson 
disease (PD). Accordingly, there is a burgeoning interest in animal model development for understanding the patho-
logical significance of extra-nigral synucleinopathy, in relation to motor and/or non-motor symptomatology in PD. 
Here, we report an experimental paradigm for the induction of aSyn aggregation in brainstem, with stereotaxic deliv-
ery of pre-formed fibrillar (PFF) aSyn in the pontine GRN of transgenic mice expressing the mutant human Ala53Thr 
aSyn (M83 line). Our data show that PFF aSyn-induced aggregate pathology in GRN and distinct nuclei of subcortical 
motor system leads to progressive decline in home cage activity, which was accompanied by postural instability 
and impaired motor coordination. The progressive accumulation of aSyn pathology in brainstem and motor neurons 
in lumbar spinal cord heralded the onset of a moribund stage, which culminated in impaired survival. Collectively, 
our observations suggest an experimental framework for studying the pathological significance of aSyn aggregation 
in GRN in relation to features of movement disability in PD. With further refinements, we anticipate that this model 
holds promise as a test-bed for translational research in PD and related disorders.
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Graphical abstract

Introduction
Idiopathic Parkinson disease (PD) is the most common 
cause of movement disability, clinically defined by the 
acronym TRAP: resting Tremor, Rigidity, difficulty in 
movement initiation (bradykinesia/Akinesia), and Pos-
tural instability [36, 52]. The prevalent notion concerning 
the movement disability in PD implicates the progressive 
decline of dopaminergic neurotransmission in the nigro-
striatal circuitry, arising due to the loss of dopaminergic 
neurons in the midbrain substantia nigra-pars compacta 
(SNpc) [36, 52]. In addition, a substantial number of PD 
patients report non-motor symptoms (olfaction, auto-
nomic, sleep and pain-related), which significantly impair 
the quality of life [57]. In a larger context, it is increas-
ingly being recognized that the nigro-centric view is not 

sufficient to account for the heterogeneity in the clinical 
presentation of PD and related disorders [33, 52, 57]. The 
nature of pathological process(es) which trigger neuronal 
dysfunction and/or neurodegeneration in SNpc remains 
an active subject of investigation. In this regard, aggrega-
tion of α-Synuclein (aSyn; gene symbol SNCA) in SNpc 
and several extra-nigral regions (i.e. outside SNpc) is con-
sidered to be a potent aggravating factor in the pathogen-
esis of PD and related synucleinopathies [19, 31].

According to the Braak staging scheme, neu-
ronal populations within the dorsal motor nucleus of 
the  vagus  nerve (dmX), locus coeruleus (LC) and the 
nuclei of reticular formation including the gigantocellular 
nuclei (GRN/Gi) bear the brunt of cellular aSyn pathol-
ogy during the early stages of PD [7–9, 34, 58]. These 
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observations ushered novel efforts in the development of 
refined animal models for studying the neurological basis 
of PD symptomatology, which are not confined by the 
prevalent nigro-centric view. The utility of these efforts 
is highlighted by the studies showing that extra-nigral 
brainstem synucleinopathy (e.g. in dmX and/or LC) reca-
pitulates PD-like non-motor symptoms and autonomic 
dysfunction in rodents [10, 38, 49, 65]. Intriguingly, the 
significance of cellular aSyn pathology affecting GRN and 
nearby nuclei of brainstem reticular formation in the con-
text of PD symptomatology remains largely unexplored.

The GRN is a prominent collection of neurons within 
the paramedian parts of pontomedullary reticular for-
mation [32]. It has been suggested that neuronal popula-
tions of GRN, in concert with basal ganglia, are involved 
in smooth execution of complex movements, including 
turning, gait stance and stopping the locomotion in freely 
moving animals [16, 17, 42]. Neuroanatomically, the 
GRN is one of the major sources of input into the reticu-
lospinal tracts, which converge on motor and premotor 
neurons at all levels of spinal cord, and modulates the 
excitability of the spinal motor system [9, 13, 43]. More-
over, in concert with raphe magnus and periaqueductal 
grey (PAG), the neurons in GRN plausibly modulate pain 
perception, through descending projections onto the 
spinal nociceptors in the dorsal horn [26, 32, 47, 68]. In 
addition, these nuclei also receive substantial input from 
cerebellum and spinal cord, and are integral components 
in the coordination of reflex motor activity in the mainte-
nance of posture and balance [9, 32, 67].

Therefore, we hypothesized that direct induction of 
aSyn aggregation within GRN of rodents will lead to the 
emergence of unique sensorimotor phenotypes, which 
could potentially be relevant to PD symptomatology. In 
particular, we wanted to study the patterns of locomo-
tion, movement coordination and nociception in relation 
to the emergence and propagation of aSyn pathology in 
brainstem, with GRN as the initial nidus of aSyn aggre-
gation. In transgenic mice expressing the human mutant 
Ala53Thr aSyn (M83 line, [29]), we induced de novo 
aggregation of aSyn in the GRN and neighboring nuclei 
of subcortical motor system by stereotaxic delivery of 
pre-formed fibrillar (PFF) aSyn. Our data show that this 
experimental approach in the rodent model led to pro-
gressive motor disability characterized by reduced spon-
taneous locomotion in home cage and subtle defects in 
postural motor coordination, long before phenotypes 
reflecting motor weakness were manifest. With the pro-
gression of aSyn pathology into additional nuclei in the 
brainstem, the animals exhibited worsening deficits in 
movement coordination and decline in survival. With 
this context, we highlight the implications of our findings 
vis-a-vis further refinements in model development for 

PD and related disorders, and also discuss the limitations 
of the model.

Materials and methods
Generation and characterization of mouse aSyn fibrils
Mouse aSyn fibrils were prepared and character-
ized in  vitro, essentially as described [23, 62]. Briefly, 
full length recombinant (wild type) mouse aSyn was 
expressed in BL21(DE3) competent cells and purified 
using ion-exchange on POROS HQ 50 ion exchange 
chromatography with a continuous gradient of 0–100% 
2 M NaCl in 20 mM Tris pH 6.5. In order to ensure that 
residual contaminants (e.g. endotoxins, nucleotides and 
lipids bound to aSyn) were completely removed, the 
sample was further purified by reverse phase chroma-
tography using a C18 column. The removal of endotoxins 
(lipoglycans) from the sample was also confirmed by the 
PierceTM Chromogenic Endotoxin Quant Kit, Thermo-
ScientificTM (< 0.5 EU/mg aSyn). The purified protein 
was dialyzed in 20 mM ammonium bicarbonate, lyophi-
lized, and stored at − 20  °C. The purified aSyn was re-
suspended in phosphate-buffered saline (PBS, pH 7.4) at 
1 mg/mL and passed through a 100 kDa filter. The mono-
meric (non-aggregated) aSyn was then incubated with 
sonicated mouse PFF (5% by mass in PBS) in a seeded 
aggregation assay [62]. The sample was incubated at 
37 °C with continuous shaking at 1050 r.p.m. in a tabletop 
microtubes shaker (Eppendorf ) for 72  h. The insoluble 
PFF were collected by centrifugation (15,600  g at 25  °C 
for 30 min) and then re-suspended in PBS. Protein con-
centration was determined by the BCA assay (Pierce) 
and a stock solution consisting of 5 mg/mL protein was 
prepared (in PBS). Subsequently, PFF were sonicated for 
20 min using a Branson 250 Sonifier at 30% intensity, and 
then aliquoted and frozen at − 80 °C until further use.

Animal studies
Animal care and husbandry. Transgenic M83 mice 
[B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J]- [29] were 
housed at the Skou animal facility at Aarhus University 
in accordance with Danish regulations and the European 
Communities Council Directive for laboratory animals. 
Ethical approval for the mouse colonies (housing, breed-
ing) and the experimental procedures was obtained by 
Danish authorities Dyreforsøgstilsynet, Denmark (license 
# 2022–15-0201–01294 issued to CBV, co-author). The 
animals were housed under a 12  h light/dark cycle and 
fed with regular chow diet ad libitum. For the study, adult 
mice (12–14  weeks of age) were used, and the cohorts 
included both male and female animals.

Intracerebral aSyn injection in the pontine GRN. PFF 
aSyn, monomeric aSyn or PBS were bilaterally delivered 
into the pontine GRN under isoflurane anesthesia (2–5%), 
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using the stereotaxic coordinates: [AP (y): − 6; ML (x): 0.5 
relative to bregma; DV (z)- 2 locations: − 5 mm (1 µl) and 
-5.2 mm (1 µl) relative to dura]. Hence, 2 µl of aSyn prep-
arations (PFF or monomeric, amounting to 10  µg total 
protein) were injected bilaterally, at a flow rate of 0.2 µl/
min through a 5 μl Hamilton syringe (33-gauge needle), 
connected to a stereotaxic frame. The needle was left in 
place (at DV -5.2 mm) for an additional 1 min, and then 
gently withdrawn over 15  s. The main study consisted 
of the following cohorts of heterozygous  M83+/- mice: 
i) PFF aSyn (n = 18; 9 males, 9 females), ii) monomeric 
(non-aggregated) aSyn (n = 5; 3 males, 2 females) and iii) 
PBS (n = 5; 3 males, 2 females). As a proof-of-concept, 
a small pilot study involving stereotaxic delivery of PFF 
aSyn in GRN of homozygous  M83+/+ mice (n = 4; 3 males, 
1 female) was also performed using identical experimen-
tal setup. After the surgical procedure, the animals were 
allowed to recover in their home cage (placed on a heated 
blanket), and received appropriate analgesia based on the 
veterinarian’s recommendations.

Behavioral assessments
After recovery (14 days), the animals were tested in a bat-
tery of sensorimotor tasks (described below) periodically 
over a period of 120  days post-injection (DPI). Unless 
indicated otherwise, the animals were acclimatized to the 
testing environment with standard lighting conditions 
and ambient background noise for 1 h prior to the tests.

General locomotion
Non-invasive monitoring of spontaneous activity in home 
cage. Patterns of locomotion and spontaneous activ-
ity were monitored in home cage through specialized 
digitally ventilated cages (DVC) platform (Tecniplast, 
Italy). This platform is based on the electrical capaci-
tance sensing technology, which incorporates a sensor 
board equipped with an integrated circuit comprised 
of 12 electrodes directly beneath the floor of home cage 
[51]. The DVC circuit measures changes in the electri-
cal capacitance signal from each electrode in response 
to the movement of a water-filled body (animal) close to 
or away from a given electrode. The measurements, per-
formed approximately 4 times per second, are remotely 
relayed to the centralized DVC analytics platform (Tec-
niplast, Italy). In this web-based interface, time-stamped 
data for each cage can be visualized using in-built tools 
(e.g. daily rhythms, cumulative activity/locomotion index 
aggregated per minute/hour, bedding status, light or dark 
period activity, heatmaps etc.). In the default setup, the 
DVC analytics web-interface plots the animal locomotion 
index as arbitrary units normalized between 0 and 100%, 
representing the overall activity performed in the cage by 
the animals, i.e., the signal is measured for each cage and 

not each animal, unless the animals are singly housed. 
The detailed description of DVC working principle and 
DVC analytics platform is included in the Supplementary 
Information.

Open-Field Test. General locomotor activity and 
exploratory behavior were assessed in an open-field 
chamber (40 cm × 40 cm × 30 cm) with video recordings 
over a period of 10  min obtained through an overhead 
USB camera, operated by the ANY-maze analytical soft-
ware (Vendor: Stoelting Europe). The test parameters 
included distance traveled (m), mean speed (m/s), time 
freezing (s), and number of entries into defined zones 
(center, periphery and intermediate).

Balance, movement coordination and motor strength
Balance beam Test. Fine motor coordination and balance 
were assessed by the balance beam test with slight modi-
fications [45]. The test apparatus consisted of flat surface 
metal beams (length: 1  m; width: 8  cm or 16  cm), sup-
ported by two poles (height: 60 cm), and equipped with a 
nylon hammock underneath (10 cm above the ground). A 
source of bright light (lamp) was used as an aversive stim-
ulus on the starting end. The mice were trained to trav-
erse the 2 beams (3 attempts on 2 consecutive days; each 
attempt separated by 15 min), towards a clean cage with 
some bedding from the home cage. During the test, video 
recordings of the behavior were obtained through a USB 
camera (operated by Microsoft Windows), placed within 
5 cm from the starting end and at the same height as the 
beam. Each animal was tested 2 times on each beam with 
inter-trial duration of 15–20  min, and the mean of the 
measurements was calculated. Video recordings in slow 
motion were analyzed for the traversal time (s), number 
of hindpaw slips and mean speed of traversal (m/s).

Pole Test. Fine motor coordination was assessed in 
a pole test [30], with a test apparatus consisting of a 
wooden pole (height: 50 cm, diameter: 1 cm), which was 
supported by a circular base stand (diameter: 10  cm) 
placed in a clean cage containing some bedding from 
the home cage. The mice were gently placed within 2 cm 
of the top of the pole facing up and away from the test-
ing personnel. Video recordings of the behavior were 
obtained through a USB camera (operated by Micro-
soft Windows), placed within 25 cm from the pole such 
that the whole length of pole could be recorded (from a 
side view, approx. 90°). Each animal was trained over 2 
consecutive days with 5 trials, with inter-trial duration 
of 15  min. During the test, each animal was subjected 
to 3 trials, with inter-trial duration of 15–20  min, and 
the average of the measurements was calculated. Video 
recordings in slow motion were analyzed for assessing 
the turning time (t1), traversal time after turning and 
reaching the base stand (t2) and total time on the pole 
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(t1 + t2). If the animal paused while descending, the trial 
was repeated. If the animal fell off during the descent, a 
maximum score of 25 s was assigned to the traversal time 
(t2) and 30 s to the total time (t1 + t2).

Rotarod Test. Fore- and hindlimb motor coordination 
and balance were assessed by placing the mice on an 
accelerating rod (Rotarod; LE8500 Harvard Apparatus)- 
[11]. The mice were trained to walk in a forward direc-
tion on the rotarod for 60–90 s with a fixed rotation rate 
of 4 rpm (3 attempts on 3 consecutive days; each attempt 
separated by 10 min). If the animal fell off before 60 s, it 
was returned to home cage and the training attempt was 
resumed after approx. 15  min. During the test, the ani-
mal was placed on the rotarod and acceleration from 4 
to 40 rpm in 120 s was initiated. Each animal was tested 
3 times, with inter-trial duration of 15–20 min, and the 
average of the measurements was calculated. The analy-
ses included time (latency in seconds) to fall and speed at 
fall (r.p.m.).

Grip strength Test. Limb motor strength was assessed 
by a grip strength test apparatus (BIOSEB, BIO-GS4), 
according to the manufacturer’s instructions. During the 
test, the mice were held by the tail and lowered onto a 
horizontal metal grid connected to a sensor detecting 
peak tension. After the animal grabbed the metal grid, it 
was pulled backwards by the tail in horizontal plane with 
a gentle constant pressure. The average maximal peak 
force (grams) exerted by the paws was recorded from 3 
consecutive trials, with an inter-trial interval of approx. 
10 s.

Footprint Test. Gait stance was assessed by a footprint 
test with slight modifications [11]. The apparatus con-
sisted of a flat wooden platform (length: 50  cm, width: 
5  cm) supported on each end by two wooden poles 
attached underneath (height: approx. 10  cm). The fore-
paws and the hindpaws were coated with red and black 
nontoxic paint, respectively. The mice were placed on 
a cut sheet of white paper (length: 40  cm, width: 5  cm) 
lightly affixed to the platform, and trained to traverse 
the platform to a clean cage with some bedding material 
from home cage. The training consisted of 3 consecutive 
attempts on 2 consecutive days (each attempt separated 
by 2–3  min) one day prior to the test (except, the pre-
terminal stage; see Results). A fresh sheet of paper was 
placed for each mouse during each training session.

On the testing day, the mice were allowed to traverse 
the platform with a fresh sheet of paper and the paint 
was air-dried for 30  min. Then, the footprint patterns 
were analyzed for measures of gait stance from 2 to 3 
consecutive steps made in the forward direction, exclud-
ing footprints made at the beginning and end of the plat-
form. The measures (all in cm) include: (1) Stride length: 
average distance of forward movement between each 

stride. (2) Step width: average diagonal distance between 
alternating front and rear paws. (3) Rear base of support 
(RBOS) and (4) Frontal base of support (FBOS): average 
distance between left and right footprints (rear or front 
paws, respectively), represented by a perpendicular line 
connecting the center of a given footstep to its opposite 
preceding and proceeding steps. (5) Step alternation: 
Overlap between left or right footprints in consecutive 
steps, i.e. distance between the center of the hind foot-
print and the center of the preceding front footprint. For 
the gait stance parameters, the mean value of each set 
comprising 2–3 values in each measure was used in the 
subsequent analyses.

Hindlimb Clasping Test. Assessment of hindlimb clasp-
ing was performed by a modified tail suspension test [24, 
69]. Freely moving, non-anesthetized, mice were held by 
the tail and lifted in air for 10 s. Severity of clasping was 
scored on a scale of 0–3, as follows: a) Score 0, No clasp-
ing (both hindlimbs were consistently splayed outwards, 
and away from the abdomen for more than 50% of the 
time suspended); b) Score 1, Mild clasping (one hindlimb 
was retracted toward the abdomen for more than 50% of 
the time suspended); c) Score 2, Moderate clasping (both 
hindlimbs were partially retracted toward the abdomen 
for more than 50% of the time suspended); and d) Score 3, 
Severe clasping (both hindlimbs were entirely retracted, 
and touching the abdomen for more than 50% of the time 
suspended).

Nociception
Hot plate. Thermal nociception/allodynia was assessed 
using a hot plate apparatus (VWR), preheated to a stable 
temperature of 55 °C ± 0.5 [63]. For the test, a bottomless 
plexiglass chamber (15  cm × 15  cm × 15  cm) was placed 
on a flat metal surface and the animals were individually 
lowered into the chamber. The latency to response (sec) 
was recorded manually, when the animal licked the paws 
or jumped. A cut-off maximum time (30 s) was used and 
animals were immediately removed after the response in 
the test.

Von Frey. Mechanical allodynia was assessed by manu-
ally applying the calibrated Semmes–Weinstein monofil-
aments (Stoelting) of ascending force (0.16–2.00 g) onto 
the plantar surface of the hindpaws, avoiding food pads 
[53]. During the test, the animals were acclimatized in 
a plexiglas container placed over a mesh metal grid for 
approximately 10  min prior to testing in an ambient lit 
room and quiet surroundings. A positive response to 
given filament application was characterized by sud-
den paw withdrawal, paw licking or jerky flailing of toes. 
Each filament was applied 5 times for maximum duration 
of 5 s to the test subject. The threshold response (g) to a 



Page 6 of 20Theologidis et al. Acta Neuropathologica Communications           (2025) 13:32 

given filament was recorded at a positive response to at 
least three out of 5 applications of the same filament.

Histological analyses
Human studies
Study cohort, ethics approval and consent, and pathological 
assessment
Post-mortem brain tissue from subjects with clini-
cal parkinsonism and neurologically normal controls 
were acquired from the Netherlands Brain Bank (NBB; 
Amsterdam, The Netherlands, http:// brain bank. nl). 
Donors or their next of kin signed informed consent for 
brain autopsy, the use of brain tissue and the use of medi-
cal records for research purposes. The brain donor pro-
gram of the NBB and NABCA is approved by the local 
medical ethics committee of the VUmc, Amsterdam 
(approval# NBB 2009.148). Demographic features and 
clinical symptoms were retrieved from the clinical files, 
including sex, age at symptom onset, age at death, dis-
ease duration, presence of dementia and parkinsonism. 
Braak stages for aSyn pathology were determined using 
the BrainNet Europe (BNE) criteria. Braak neurofibril-
lary stages were determined according to the NIA-AA 
consensus criteria. A summary of the clinical and path-
ological characteristics for all cases can be found in the 
supplementary file (Table S1).

Human tissue processing and immunohistochemistry (IHC) 
analyses
IHC detection of p-aSyn (S129) was performed on 6 µm 
thick formalin-fixed paraffin-embedded (FFPE) tissue 
sections of medulla oblongata, following deparaffiniza-
tion and blocking of endogenous peroxidase, accord-
ing to previously established methods [66]. Nonspecific 
binding was blocked by incubating the sections in Tris-
Buffered Saline (TBS) containing 3% normal donkey 
serum for 30  min at room temperature (RT). Then, the 
sections were incubated (overnight, at 4 °C) with the pri-
mary antibody for detecting p-S129 aSyn (rabbit mAb 
EP1536Y Abcam, #ab51253- 1:4000). Then, the sections 
were stained with secondary detection solution Envi-
sion anti-rabbit (DAKO cat# K4003) for 30  min at RT. 
Color was developed using the DAB (3,3’-diaminoben-
zidine) chromogen for 10  min at RT. Nuclear counter-
staining was performed in hematoxylin for 20  s, after 
which sections were washed under running tap water for 
5 min. Sequential dehydration in ethanol was performed 
in series: 1 × 2  min 70%, 1 × 2  min 80%, 2 × 2  min 96%, 
2 × 2  min 100%, followed by 3 × 2  min xylene. Entellan 
(Merck, cat# 107,960) was used as mounting medium for 
cover-slipping. After cover-slipping, sections were left to 
dry overnight in the fume hood. Whole slide digital scans 
of the immunostained sections were obtained using the 

brightfield mode in Olympus VS200 upright microscope 
at UMC Amsterdam (20X magnification). Slide scans 
from PD and control cases were imported in QuPath (v. 
0.5.1) and p-aSyn (S129) immunopositivity was com-
puted using a pixel classifier on the DAB channel [6]. The 
data were normalized to the area of the region of interest 
(ROI) covering GRN.

Animal studies
IHC and immunofluorescence (IF) analyses of the mouse 
brain and lumbar spinal cord sections. IHC or IF on 
10  µm thick sections from FFPE tissue was performed 
after deparaffinization and antigen retrieval in citrate 
buffer pH 6.0, essentially as described [24]. Nonspecific 
binding was blocked by incubating the sections in 5% 
normal donkey serum in TBS (1  h, RT). Then, the sec-
tions were incubated (overnight, at 4  °C) with the fol-
lowing primary antibodies (also indicated in the relevant 
figure legends): phospho-S129 aSyn antibodies (rabbit 
mAb EP1536Y Abcam, #ab51253- 1:400; rabbit mAb 
D1R1R, Cell Signaling #23,706- 1:400), Neuronal nuclei 
marker (NeuN, mouse mAb A60, Millipore #MAB377- 
1:1000), astroglial marker, glial fibrillary acidic protein 
(GFAP, chicken polyclonal, Abcam #4674- 1:200), phago-
cyte marker CD68 (LAMP4, rat mAb FA-11, Novus Bio-
logicals #NBP2-33,337- 1:200), and Sequestosome 1/p62 
(guinea pig, Nordic Biosite GP62-C- 1:200). For dou-
ble IF co-detection, fluorophore conjugated secondary 
antibodies were used (Thermo Fisher: AlexaFluor488, 
AlexaFluor568, AlexaFluor647, 1:1000). For IHC, DAB 
chromogen detection was performed following prior 
incubation with biotin conjugated secondary antibody 
(anti-mouse, Sigma #B7264- 1:100) and Extra-Avidin 
peroxidise (Sigma #E2886- 1:200). In the lumbar spinal 
cord samples, co-detection of phospho-S129 aSyn (rabbit 
mAb EP1536Y Abcam, #ab51253- 1:400; DAB chromo-
gen) and NeuN (mouse mAb A60, Millipore #MAB377- 
1:1000; Vina Green chromogen, Biocare Medical #SKU: 
BRR807A) was performed. Sections were counterstained 
with hematoxylin (Vector Labs, #H-3401).

For the image analyses, whole slide digital scans of 
the brain sections were obtained using the Olympus 
VS120 upright microscope (at AU) equipped for bright-
field scanning and fluorescence single-band emitters for 
DAPI, FITC, Cy3 and Cy5. High resolution IF views were 
exported using QuPath (v. 0.5.1), for further analysis with 
ImageJ. ROI for neurons (NeuN +) or microglia (CD68 +) 
were identified using Cellpose [61], followed by manual 
corrections to determine cell profile numbers expressed 
as cell profiles/area in  mm2. NeuN masks defined the 
neuronal area in each tissue section. P-aSyn (S129) and 
GFAP area fractions were defined by thresholding at the 
same level across all sections. P-aSyn (S129) area fraction 

http://brainbank.nl
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was also quantified both within and outside neuronal 
masks (NeuN). Scans of the lumbar spinal cord were ana-
lyzed in QuPath (v. 0.5.1) and p-aSyn (S129) immunopo-
sitivity was computed using a pixel classifier on the DAB 
channel [6]. The data were normalized to the area of the 
region of interest (ROI) covering the ventral horn.

Mouse Neuroanatomical Topography. Panoramic views 
of digital slide scans were mapped onto Mouse Brain 
Atlas (Paxinos and Franklin’s The Mouse Brain in Stereo-
taxic Coordinates, Elsevier Publishing, 4th Edition)- [27]. 
Information about neuroanatomical tracts and nuclei 
in mouse CNS was primarily derived from The Mouse 
Nervous System (Elsevier Publishing, 1st Edition)- [67].

Statistics. The data were statistically analyzed in 
Graphpad Prism software version 8, and the final graphs 
were prepared in Graphpad or Microsoft Excel. Statisti-
cal significance in datasets was calculated following the 
guidelines from relevant literature, as indicated in the 
figure legends. P values were set at: *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.

Results
In this study, we aimed to refine an experimental para-
digm of in vivo aSyn aggregation for studying the signifi-
cance of prodromal aSyn pathology in GRN, particularly 
in the context of sensorimotor phenotypes relevant to 
PD. Lewy-related aSyn pathology affecting the GRN and 
nearby nuclei of the reticular formation in PD has been 
reported previously, using silver staining methods and/
or immunodetection of aSyn using antibodies/anti-sera 
[8, 9, 58]. In order to assess the aggregation state of aSyn 

in GRN, we performed IHC on post-mortem sections of 
medulla oblongata obtained from cases with clinically 
diagnosed parkinsonism (Table S1). For this purpose, we 
assessed the phosphorylation of aSyn on the serine resi-
due S129 (p-aSyn, S129), which is one of the most widely 
used biochemical marker of aSyn pathology [1, 31, 60]. 
Our data corroborate the findings from pioneer studies, 
such that we observed significant accumulation of p-aSyn 
(S129) in the GRN of PD cases compared to the controls 
(Fig. 1A–B; antibody, EP1536Y).

To evaluate the consequences of aSyn aggregation in 
GRN in the rodent brain, we performed stereotaxic deliv-
ery of murine aSyn PFF into the pontine GRN of adult 
(12–14  weeks old) transgenic M83 mice, expressing 
the aggregation prone human mutant A53T aSyn [29]. 
This approach (i.e. delivery of exogenous PFF as seed-
ing agents) for promoting de novo aSyn aggregation has 
been reproducibly used for studying the effects of aSyn-
induced proteopathic stress in the nervous system, in 
both transgenic models and in wild type rodents [4, 14, 
15, 24, 44, 56, 64]. Accordingly, we designed an experi-
mental protocol in which we incorporated longitudinal 
assessment of select sensorimotor behaviors in heterozy-
gous  M83+/- mice, following PFF-mediated induction of 
aSyn aggregation in brain, with GRN as the initial nidus 
(Fig.  2A). Our main cohort consisted of heterozygous 
 M83+/-  mice injected with PFF aSyn (n = 18; 9 males 
and 9 females), while monomeric aSyn and PBS vehicle 
injection were used as controls (n = 5/group; 3 males, 2 
females in each group). Using p-aSyn (S129) as a surro-
gate marker of cellular aSyn pathology [1, 31, 60], we also 

Fig. 1 Immunostaining of phospho-alpha synuclein (p-aSyn, S129) in post-mortem human brain sections. A Representative images showing 
p-aSyn (S129) immunostaining in the transverse sections of medulla oblongata from controls and PD cases, with the gigantocellular nuclei 
(GRN) outlined by the dashed grey lines. Insets show high magnification images from the panoramic view, reflecting prominent Lewy pathology 
in PD and visible lack of staining in the controls. Scale bar = 2 mm (insets = 50 µm). Primary antibody in Fig. 1A: p-aSyn (S129)- abcam EP1536Y. 
B Quantification shows that PD cases contain significantly more pS129-positive Lewy pathology than controls (p = 0.0286). Graph displays 
mean ± SEM of area % covered by p-aSyn S129 staining. Groups were compared with a Mann–Whitney test, as they did not pass the normality 
(Shapiro–Wilk) test. *p < 0.05, n = 4 per group
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studied the induction of aSyn aggregation in GRN and its 
propagation into additional brain regions over time.

Here, we show that PFF-mediated induction of multi-
focal aSyn aggregate pathology in GRN and distinct 
nuclei of subcortical motor system in the brains of trans-
genic M83 mice led to the emergence of phenotypes 
reflecting altered patterns of spontaneous activity and 
progressive deterioration of motor performance. In brief, 
9 out of the 12 PFF-injected heterozygous  M83+/- mice 
reached a terminal stage within 129  days post-injection 
(DPI-129), with median time to a moribund state of 
124.5 days (Fig. 2B). Among the animals which reached 
a terminal stage for euthanasia, 5 were males (median, 
111 days) and 4 were females (median, 126 days); albeit, 

due to the small sample size, these differences were not 
significant. These animals started to exhibit signs of 
unilateral foot-drop and/or bouts of prolonged inactiv-
ity near the terminal stage (≥ DPI-108). In comparison, 
the control  M83+/- cohorts (PBS and monomeric aSyn) 
remained asymptomatic in gross appearance (i.e. no 
foot-drop, freezing or significant weight loss) over the 
duration of the experiment. The median body weight (in 
grams) difference in the heterozygous  M83+/- cohorts 
between DPI-60 and the time of sacrifice beyond DPI-90 
was: PBS, -1.3  g (n = 5), monomeric aSyn, -1.5  g (n = 5) 
and PFF aSyn, -1.3  g (n = 11)- Fig.  2C Prior to initiat-
ing the study in heterozygous  M83+/- (Fig.  2A), we per-
formed a pilot study in cohorts of homozygous  M83+/+ 
mice (n = 4; 12–16 weeks old), in which PFF aSyn delivery 
was associated with a highly unfavorable outcome with 
median time to a moribund state of 34.5 days (Fig. 2B). 
Albeit, the pilot study (using  M83+/+ mice) lacked appro-
priate controls, and a detailed behavioral characteriza-
tion was not performed. Nevertheless, these observations 
are in congruence with previous reports that PFF aSyn 

Fig. 2 Overview of the study design in cohorts of heterozygous 
 M83+/- mice. A In cohorts of transgenic  M83+/- mice (12–14 weeks 
of age), phosphate buffered saline (PBS) vehicle (n = 5), monomeric 
(non-aggregated) aSyn (n = 5) or pre-formed fibrillar (PFF) aSyn 
(n = 18) were sterotaxically delivered bilaterally in the pontine GRN/
Gi. Post-recovery, the mice were periodically assessed over time 
in tests of sensorimotor behaviors (green arrows, median interval 
between measurements: 15 days, unless indicated otherwise 
in the figure legends). Timed tissue collection was performed 
from the PFF-injected cohort after sacrifice at 30 and 60 days 
post-injection (DPI) (n = 3/time-point), or in the event of a humane 
endpoint (period is highlighted by the dashed red line). The 
PBS and monomer cohorts were euthanized at the termination 
of the study (Between DPI-120 and DPI-130). B Kaplan–Meier plot 
showing survival of transgenic  M83+/- mice injected with PBS, 
monomeric aSyn or PFF aSyn bilaterally in the pontine GRN/Gi. The 
survival analyses do not include mice from the  M83+/- PFF aSyn 
cohort terminated at DPI-30 and DPI-60 (timed-sacrifice, mentioned 
in A). The median time to moribund state for the heterozygous 
 M83+/- was 124.5 days post-injection (9 out of 12 animals reached 
a terminal stage by DPI-129; the 3 remaining animals were 
euthanized at DPI-130 and not included/censored in the survival 
analyses). A small cohort of homozygous  M83+/+ mice (n = 4) 
was also studied for comparison, in which the median time 
to a moribund state was 34.5 days. The PBS and monomeric injected 
mice  M83+/- remained comparatively asymptomatic in gross motor 
performance (i.e. no foot-drop, paralysis or significant weight loss) 
over the duration of the experiment. Statistics in Fig. 2B: Log-rank 
Mantel-cox test  (M83+/- cohorts: PBS, n = 5; monomeric aSyn, n = 5; 
PFF aSyn, n = 12 and  M83+/+ cohort: n = 4; ****p < 0.0001; χ2, 42.28; 
df, 3). C Line graph showing the body weight measurements 
of the cohorts of heterozygous  M83+/- mice over the duration 
of the study up to DPI-120. Statistics in Fig. 2C: Two-Way ANOVA 
with Geisser-Greenhouse correction  (M83+/- cohorts: PBS, n = 5; 
monomeric aSyn, n = 5; PFF aSyn, n = 9–18; χ.2, 189.4; df, 1; Error bars, 
Mean ± SD; ns = not significant)

◂
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delivery in transgenic M83 mice is associated with pro-
gressive motor impairment and reduced survival, with 
significantly earlier onset in the homozygous mice com-
pared with the heterozygous animals [24, 56, 59].

Direct PFF aSyn delivery in the GRN leads to an early‑onset 
phenotype characterized by progressive decline 
in spontaneous activity and decreased locomotion 
in  M83+/‑ mice
In order to assess the effects of aSyn aggregation in 
GRN on spontaneous activity and locomotion in  M83+/- 
mice, we employed non-invasive 24-h monitoring using 
DVC- digitally ventilated cages [51]. For this purpose, we 
tracked the animals’ activity (DVC locomotion index, see 
Methods) over a longitudinal period, starting from DPI-
36 to DPI-90. Our results show a progressive decline in 
the spontaneous locomotion of PFF aSyn-injected  M83+/- 
mice (n = 12, in 4 cages), which could be clearly distin-
guished from the controls by DPI-60 (Fig.  3A; compare 
PBS and monomeric aSyn; n = 5/in 2 cages/group). More-
over, evaluation of daily rhythms and home cage activity 
during light/dark periods revealed that the PFF-injected 
 M83+/- mice were significantly less active during the dark 
period (night time, active time for rodents), compared to 
the controls (PBS and monomeric aSyn; Fig. 3B, C; com-
plete data on daily rhythms are presented in Fig. S1).

In parallel, we also assessed the locomotion pattern 
and exploratory behavior of the mice in open-field 
arena at DPI-60, DPI-90 and DPI-120. Intriguingly, 
while the findings in DVC suggest a progressive reduc-
tion in activity by the PFF aSyn-injected cohort as 
early as DPI-60, all the experimental groups showed 
a similar pattern of activity in the open-field arena 
at DPI-60 and DPI-90 (Fig.  S2A–B). However, at the 
advanced stage of the study (DPI-120), distinct loco-
motion patterns between the groups could be distin-
guished (Fig.  3D–G; S2C). Near termination, the PFF 
and monomeric aSyn-injected mice moved shorter 
distances (Fig. 3E), were slower (Fig. 3F), and exhibited 

more frequent freezing episodes compared to the PBS 
cohort. Intriguingly, we also observed differences in 
entries to the periphery or center of the arena between 
the monomeric aSyn and PFF aSyn injected animals 
(Fig.  S2B–C). A video montage of the open-field 
behavior is presented in the supplementary files acces-
sible on the figshare repository (Table S2): VIDEO 1–5 
 (M83+/-) and VIDEO 18  (M83+/+)- see Data availability.

PFF aSyn‑injected  M83+/‑ mice exhibit progressive defects 
in fine control of posture and balance
The experimental cohorts of  M83+/- mice were also sub-
jected to longitudinal assessment of motor coordination 
and balance using a battery of standard tests [2, 18, 37, 
38]. During these assessments, PFF aSyn-injected  M83+/- 
mice exhibited progressive deterioration of performance 
in the balancing beam test (Fig.  4A–C). These deficits 
were observed as early as DPI-45 on the narrow beam 
(diameter: 8 mm), such that the animals took longer time 
to traverse, experienced frequent slips of the hindpaws 
and had overall slower speed of movement, compared 
to the controls (Fig.  4A). Strikingly, the performance of 
all cohorts was relatively comparable on the wider beam 
(diameter: 16 cm) until DPI-90 (Fig. 4B), suggesting rela-
tively intact postural reflexes and lack of gross motor 
weakness. The latter is further corroborated by the find-
ings from the grip strength test (Fig.  S2D), which ruled 
out major defects in motor strength and the ability to 
grab and hold surfaces. In the balance beam test, we also 
observed freezing of movement in the PFF aSyn-injected 
 M83+/- cohort, with the mice hesitating to initiate the 
traversal and adapt a hunched posture (Fig. 4C). Near the 
terminal stage (DPI-120), slower movement and frequent 
hindpaw slips were eventually observed on the wider 
beam as well (Fig. 4B). Thus, these data (Fig. 4A–C) indi-
cate a progressive nature of the deficits in fine control 
of postural adaptations in the PFF aSyn-injected  M83+/- 
mice. A video montage of the performance in balance 

Fig. 3 Spontaneous activity and locomotion in cohorts of heterozygous  M83+/- mice. A–C Non-invasive monitoring of spontaneous activity 
by cohorts of  M83+/- mice in digitally ventilated cages (DVC) over a longitudinal period up to 56 days post-injection (DPI), starting at DPI-36. The 
line chart (in 3A) represents the cumulative locomotion index (x-axis, days), which is represented for light and dark periods (in 3B, x-axis showing 
time in minutes) and heatmaps (in 3C, x-axis showing time in hours over 24-h period each day, y-axis showing days with DPI-36 as the starting 
point on top). Also see line charts in S1A-D, displaying daily locomotion index for each day, including light and dark periods. Statistics in Fig. 3A: 
One-Way ANOVA followed by Dunn’s multiple column comparisons (PBS, n = 5 housed in 2 cages; monomeric aSyn, n = 5 housed in 2 cages and PFF 
aSyn, n = 12 housed in 4 cages; *p < 0.05; Error bars, Mean ± SD). Only significant differences are highlighted. D–G Measurements of spontaneous 
activity by cohorts of  M83+/- mice in the open-field arena recorded over 10 min (ANY-maze, see Material and Methods) and representative tracking 
plots (in 3D) at the indicated time points (Days post-injection: DPI-60, DPI-90 and DPI-120. Bar graphs with individual points represent quantitative 
measurements of the overall distance travelled (in 3E), mean speed (in 3F) and time freezing (in 3G). Statistics in Fig. 3E–G: One-Way ANOVA 
followed by Tukey’s multiple column comparisons (PBS, n = 5; monomeric aSyn, n = 5 and PFF aSyn, n = 9; *p < 0.05, **p < 0.01; Error bars, Mean ± SD). 
Only significant differences are highlighted. Also see Fig. S2A-B for data from the open field test at time-points DPI-60 and DPI-90

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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beam test is presented in the supplementary files acces-
sible on the figshare repository (Table  S2): VIDEO 6–9 
 (M83+/-) and VIDEO 19  (M83+/+)- see Data availability.

Impaired performance in complex sensorimotor 
tasks and defective response to nociceptive stimuli 
is a late‑stage phenotype in the PFF aSyn‑injected  M83+/‑ 
mice
We also subjected the experimental cohorts of  M83+/- 
mice to tests requiring more complex sensorimotor skills 
and motor coordination. Among these, the pole test and 
the accelerating rotarod are commonly employed meth-
ods for phenotype assessment in models of basal ganglia 
disorders, including aSyn overexpressing rodents [2, 18]. 
In the pole test, the performance of experimental cohorts 
was overall comparable during the early stage of the 
study (DPI-60) (Fig.  4D, top panel). In contrast, signifi-
cant differences between PFF aSyn-injected  M83+/- mice 
and controls were seen near the terminal stage (DPI-120; 
Fig. 4D, bottom panel). At DPI-120, the PFF aSyn cohort 
exhibited increased latency in the turning response; how-
ever, the increased latency in descending and more time 
spent on the pole is due to assigning the cut-off test val-
ues to 3 out of 6 mice (see Methods). A video montage 
of the performance in the pole test is presented in the 
supplementary files accessible on the figshare repository 
(Table S2): VIDEO 10–13  (M83+/-)- see Data availability. 
The severity of movement incoordination was further 
substantiated by the findings from the rotarod test, in 
which the performance of PFF aSyn cohort at DPI ≥ 60 
was significantly impaired in comparison with the con-
trols (Fig. 4E; latency to fall, speed at fall).

Taken in conjunction, these findings indicate that gross 
defects in movement coordination following PFF aSyn 
delivery in the GRN are features defining the advanced 
stages of motor disability. This notion is further sup-
ported by assessments in the footprint test (gait stance) 

and additional tasks requiring sensorimotor coordination 
(hindlimb clasping and response to nociceptive stimuli- 
see below). In the footprint test, we did not observe sig-
nificant alterations in stride length, step width and base 
of support measurement between the cohorts (Fig. S3B–
C) However, there were signs of uncoordinated gait 
at the pre-terminal stage (1–2  days before euthanasia, 
DPI ≥ 108) in 4 PFF aSyn-injected mice, reflected by the 
changes in step alternation during locomotion (Fig. S3B, 
S3D; compare instances indicated by green arrows and 
red arrows, reflecting coordinated gait or gait incoordi-
nation respectively). In one female (euthanized DPI-123), 
signs of imminent unilateral foot-drop could also be seen 
(Fig. S3B).

Another prominent phenotype in the M83 mice, 
reported as a harbinger of motor collapse in the presence 
of established brainstem aSyn pathology, is moderate-to-
severe degree of hindlimb clasping [20, 24, 28]. This sen-
sorimotor reflex is reliant upon an intact postural motor 
coordination, and is also impaired in models of basal 
ganglia, cerebellar or motor neuron dysfunction [41]. In 
the early stage (DPI-60), we observed a normal response 
(score 0) or mild degree (score 1) of hindlimb clasping 
in the controls, and 50% of the PFF aSyn-injected mice 
(Fig. 4F). Around DPI-120, ~ 30% animals in the PFF aSyn 
cohort progressed to moderate-severe degree of clasp-
ing (Fig.  4F; scores 2–3), suggesting potential dysfunc-
tion in pathways mediating this reflex response. A video 
montage of the hindlimb clasping test is presented in the 
supplementary files accessible on the figshare reposi-
tory (Table  S2): VIDEO 14–17  (M83+/-) and VIDEO 20 
 (M83+/+)- see Data availability.

Lastly, a previous study suggested that PFF aSyn deliv-
ery, using intramuscular injections, impaired nociception 
and mechanical allodynia in the  M83+/- mice [23]. There-
fore, we also assessed sensorimotor reflexes of nocicep-
tion/allodynia using thermal or tactile stimuli (Hot plate 

(See figure on next page.)
Fig. 4 Measurements of sensorimotor behaviors in cohorts of heterozygous  M83+/- mice. A–B Assessment of motor coordination of  M83+/- cohorts 
(injected with PBS, monomeric aSyn or PFF aSyn) in the balancing beam test over a longitudinal period (shown on x-axis as DPI, days post-injection). 
The line graphs show the traversal time (seconds), number of slips and speed (m/s) on 8 mm wide beam (in 4A) and 16 mm wide beam (in 4B). 
C Representative images showing postural adaptations and performance on 8 mm beam by PBS or PFF-injected  M83+/- mice. D Bar graphs 
depicting performance of  M83+/- cohorts (injected with PBS, monomeric aSyn or PFF aSyn) in the pole test with individual points representing 
the quantitative measurement of the turning time, traversal time and total time on pole at DPI-60 and DPI-120 (DPI, days post-injection). E 
Assessment of motor coordination of  M83+/- cohorts (injected with PBS, monomeric aSyn or PFF aSyn) in the rotarod test over a longitudinal period 
(shown on x-axis as DPI, days post-injection). The line graphs depict the quantitative measures of the latency to fall (time, in seconds) and speed 
at fall (rotations per minute, RPM). F Postural reflex assessment in modified tail-suspension test with bar graphs depicting hindlimb clasping 
by cohorts of  M83+/- mice (injected with PBS, monomeric aSyn or PFF aSyn) at DPI-60 and DPI-120 (DPI, days post-injection). G–H Assessment 
of thermal nociception (hot plate, in 4G) and mechanical allodynia (von Frey, in 4H) in cohorts of  M83+/- mice (injected with PBS, monomeric 
aSyn or PFF aSyn). Statistics in Fig. 4A-H: One-Way ANOVA followed by Tukey’s multiple column comparisons (PBS, n = 5; monomeric aSyn, n = 5 
and PFF aSyn, n = 6–9; *p < 0.05, **p < 0.01; Error bars, Mean ± SD). Black asterisks (all panels) represent significant differences between PBS and PFF 
aSyn-injected cohorts, while the grey asterisks (in 4A, 4E and 4G) indicate significant differences between monomeric aSyn and PFF aSyn-injected 
cohorts. Only significant differences are highlighted
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Fig. 4 (See legend on previous page.)
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and Von Frey filaments, respectively). In these tests, we 
observed that all experimental cohorts responded simi-
larly throughout the study (i.e. exhibited an intact noci-
ceptive response, in Fig. 4G–H). Although, we observed 
a relatively increased latency in the Hot plate in the PFF 
aSyn-injected cohort around DPI-120 (Fig. 4G), given the 
defects in movement coordination at this stage, we are 
unable to conclude if this reflects general motor weak-
ness or a sensory defect in nociception.

PFF aSyn delivery induces de novo aSyn aggregation 
in the GRN with spatiotemporal progression in brainstem
In addition to the behavioral characterization, we wanted 
to contextualize the nature of neuronal aSyn pathology 
that potentially underlies the early and late phenotypes 
in movement coordination in  M83+/- mice, following PFF 
aSyn delivery in the GRN (Figs. 3 and 4). Accordingly, we 
assessed the emergence and spatiotemporal progression 
of aSyn pathology in select brain regions (Fig.  S4). Our 
analyses were guided by previous studies in M83 mice, 
showing substantial p-aSyn (S129) accumulation (spon-
taneous age-related, or PFF-induced) in the nuclei of the 
reticular formation including the GRN, midbrain PAG 
and vestibular nuclei (VN) [4, 24, 29, 56, 59]. Moreo-
ver, a mild-to-moderate degree of aSyn aggregation has 
also been detected in the deep cerebellar nuclei (DCN), 
red nucleus (RN) and motor cortex (M1/M2). Notably, 
pathological involvement of the substantia nigra (SN), 
striatum (caudatoputamen, CPu) and parts of thalamus is 
rarely observed in the M83 line [4, 24, 29, 56, 59].

By IF analyses (antibody: EP1536Y), we detected a 
sparse degree of p-aSyn (S129) accumulation in the GRN 
of PBS-injected mice at DPI-120 (Figs. 5A, 6B), likely due 
to spontaneous aSyn aggregation in the ageing trans-
genic  M83+/- mice. In contrast, substantially more p-aSyn 
(S129) was detected in the GRN of the monomeric aSyn-
injected cohort at DPI-120, in both neuronal cell bod-
ies and in the surrounding neuropil (Figs. 5B and 6B). In 
the PFF aSyn injected mice, localized p-aSyn (S129) was 
detected within the GRN and adjacent pontine reticular 
formation as early as DPI-30 (Figs.  5C and 6A–B, S7B), 
and appeared to predominantly affect the neuropil (i.e. 
based on minimal overlap with neuronal nuclei marker, 
NeuN; Fig.  S7A). Outside the GRN, we did not detect 
appreciable degree of p-aSyn (S129) accumulation at 
this early stage (Fig.  6A, S5A-E, S7B; regions shown in 
S5: VN, DCN, RN, PAG, and subthalamic nucleus- STh; 
also see Fig.  S8A–D, lumbar spinal cord- ventral horn). 
By DPI-60, there was further increase in p-aSyn (S129) 
within GRN, characterized by a mixed pattern of accu-
mulation in neuronal perikarya and surrounding neuro-
pil (Figs. 5C and 6A–B, S7A-B). Among the other regions 
examined, p-aSyn (S129) was detected in the VN, and to 

a lesser extent in the DCN, RN, PAG and STh at this stage 
(Fig. 6A, S5A-E, S7B). Moreover, sparse degree of p-aSyn 
(S129) was conspicuous in the ventral horn and inter-
mediate grey matter of the lumbar spinal cord (Fig. S8B, 
D). The progressive nature of PFF aSyn-induced pathol-
ogy was further corroborated by the analyses at terminal 
stage (DPI ≥ 108), which revealed significantly increased 
detection of p-aSyn (S129) not only in the GRN (Figs. 5C 
and 6A–B, S7B) but also in additional brain regions. 
Among the latter, nuclei within pons, cerebellum and 
midbrain showed a higher degree of cellular p-aSyn 
(S129) accumulation, while STh and some regions in 
thalamus/hypothalamus were weakly immunopositive 
(Fig. 6A, S5A–E, S6A, S7B). Similarly, there was signifi-
cant increase in the p-aSyn (S129) immunopositivity in 
the lumbar spinal cord of PFF aSyn cohort at the termi-
nal stage (DPI ≥ 108), compared to the DPI-30 and DPI-
60 cohorts (Fig. S8A–D). Lastly, in line with the previous 
reports, there was visible lack of p-aSyn (S129) accumula-
tion in M1/M2, Cpu and SN (Fig. S6A).

PFF aSyn‑induced aSyn aggregation in GRN of  M83+/‑ mice 
is associated with neuroinflammation
To further characterize the cellular aSyn pathology, we 
performed dual IF detection of p-aSyn (S129) with p62 
protein (Sequestosome 1, a marker of intracellular pro-
tein aggregates and autophagy), or markers of inflam-
matory gliosis in the PFF aSyn-injected cohort. For this 
purpose, we restricted our analyses to GRN (initiation 
site in pons), PAG (a propagation site in midbrain) and 
M1/M2 (motor cortex, with minimal aSyn aggregation) 
in the terminal stage animals (DPI ≥ 108). As expected, 
p-aSyn (S129) aggregation within the GRN and PAG was 
associated with substantial p62 accumulation, reflected 
by IF co-detection of the two markers (Fig. S6B; compare 
M1/M2). In parallel, we also probed reactive astroglio-
sis and microglial infiltration, which have been reported 
as neuropathological features in the brains of M83 mice 
with advanced aSyn pathology [56, 59]. In the disease 
affected regions (GRN and PAG), we detected substantial 
expression of markers reflecting astroglia proliferation 
(GFAP, in Fig. S6C and S7C), and infiltration by phago-
cytic microglia (CD68, in Fig. S6D and S7D). In addition, 
we assessed the degree of neuronal loss in the GRN, as 
a potential underlying factor for the observed sensori-
motor phenotypes in the PFF aSyn-injected cohort. Our 
analyses suggest a slight (albeit, non-significant) decrease 
in the total number of neurons in the GRN and adjacent 
part of the pontine reticular formation (Fig. 6C).

In addition to the detailed quantitative studies in hete-
rozygous  M83+/- cohorts presented above, we also exam-
ined p-aSyn (S129) accumulation in select brain regions 
of terminal stage homozygous  M83+/+ mice, following 
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Fig. 5 Dual immunofluorescence detection of phosphorylated alpha-synuclein (p-aSyn, S129) and neuronal nuclei (NeuN) in the GRN 
of  M83+/- mice. A–C Representative low magnification (10X) images showing p-aSyn (S129) and neuronal nuclei (NeuN) immunofluorescence 
detection in the GRN/Gi of PBS (in 5A), monomeric aSyn (in 5B) and PFF aSyn (in 5C) injected  M83+/- mice at indicated time-points (DPI, 
days post-injection). The insets show 63X magnified views of the GRN/Gi, highlighted by the white-bordered square in the 10X views (scale 
bar = 200 µm). Notice the neuritic and cellular aSyn pathology in monomeric aSyn-injected cohort (DPI-120, in 5B) and the PFF aSyn-injected 
cohort, which increases over time in the latter (DPI-30 to terminal stage DPI ≥ 108; also see Fig. 6B and S7A). A sparse degree of spontaneous aSyn 
pathology was also seen in the PBS-injected cohort (in 5A, DPI-120, age 7–8 months). Also see Supplementary Figures S5 (additional brain regions 
with p-aSyn, S129 positivity), S6-7 (markers of inflammatory gliosis) and S9 (p-aSyn S129 detection in the terminal-stage homozygous M83.+/+ 
mice, ≥ DPI-34). Primary antibodies in Fig. 5A–C: p-aSyn (S129)- abcam EP1536Y and NeuN- EMD Millipore A60
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aSyn PFF delivery in the GRN (pilot study, Fig. 2B). While 
we have not performed detailed quantitative assessments, 
IF and IHC (DAB chromogen) suggested a similar pat-
tern of regional p-aSyn (S129) distribution, such that the 
GRN and the nearby VN (in pons) and PAG (in midbrain) 
were among the most conspicuously affected regions 
(Fig. S9A–D). Moreover, the motor cortex (M1/M2) was 
largely devoid of p-aSyn (S129), as suggested by a sparse 
IF signal (Fig. S9E). Lastly, we aimed to rule out any bias 
in p-aSyn (S129) detection, which could potentially ema-
nate from reliance on a single antibody (EP1536Y) used 
in the main analyses (Figs. 5 and 6, S5-S7). To this end, 
we employed a different polyclonal antibody (rabbit, 
D1R1R), and assessed p-aSyn (S129) immunostaining in 
the GRN of the terminal stage heterozygous  M83+/- mice. 
By IF and IHC (DAB), both antibodies detected charac-
teristic pattern of cellular p-aSyn (S129) immunostain-
ing in the GRN, i.e. in neuronal perikarya and neuropil 
(Fig. S9A–B). Taken together, these analyses are compel-
ling indicators of the pathological nature of p-aSyn (S129) 
accumulation in the brains of M83 mice, following PFF 
aSyn delivery in the GRN.

Discussion
Progressive movement disability, in the form of diffi-
culty in movement initiation (bradykinesia) and impaired 
postural reflexes (shuffling gait, difficulty in turning) is 
among the cardinal features of clinical parkinsonism. It 
is also recognized that pathological aSyn accumulation 
affecting distinct extra-nigral loci in the nervous system 
may precede the onset of clinical symptoms by several 
years, and depending on the initial site of aggregation, 
may dictate the course of disease progression [7, 12, 34, 
36, 39, 48, 57]. Historically, the significance of extra-
nigral brainstem aSyn pathology- to a large extent- has 
been investigated in the context of non-motor symptoms 
[10, 22, 37, 38, 49, 65]. Hence, experimental models of 

extra-nigral brainstem aSyn pathology in the context of 
PD motor symptomatology are few and far between.

In this study, we investigated the significance of patho-
logical aSyn aggregation in neuronal populations of the 
GRN in relation to features of movement disability in 
PD. Our data show that the initial phase of multi-focal 
aSyn pathology affecting the GRN and distinct nuclei of 
subcortical motor system (vestibular nuclei, cerebellar 
nuclei, red nucleus, subthalamic nucleus; Figs.  5C and 
6A, B, S7B) in brains of heterozygous  M83+/- mice was 
associated with progressive reduction in spontaneous 
locomotion (Fig.  3A, B, DVC) and concomitant defects 
in the fine control of postural reflexes (Fig.  4A–C, nar-
row beam). However, gross defects in locomotion pat-
terns (Fig. 3D–G, open field) and signs of incoordination 
in complex sensorimotor tasks (Fig. 4D–F) emerged at a 
later stage, when widespread aSyn pathology and neuro-
inflammation were detected (Fig. S5-S7). Collectively, the 
spatiotemporal progression of cellular aSyn pathology 
and emergent sensorimotor phenotypes warrant further 
refining this experimental paradigm (discussed below), 
towards establishing the pathogenic significance of aSyn 
aggregation in the GRN.

Nevertheless, there are some key limitations that pre-
clude major conclusions from the study presented above. 
The most obvious limitation is the small sample size and 
lack of detailed analyses for the controls at earlier time 
points (DPI-30 and DPI-60), especially monomeric aSyn 
injected animals. Close to the termination of the study 
(DPI-120), these animals also started to exhibit slight 
decline in the spontaneous activity (Fig.  3A–C) and 
altered patterns of locomotion in the open-field (Fig. 3D–
G), in association with localized aSyn pathology in the 
GRN (Fig.  5B and 6B). Future studies could exploit this 
relatively slower aggregation paradigm and yield better 
insights into the natural history of motor phenotypes 
in the context of progression of aSyn pathology in this 
(GRN synucleinopathy) model. Another major limitation 

(See figure on next page.)
Fig. 6 Composite schematic depiction of phosphorylated alpha-synuclein (p-aSyn, S129) immunofluorescence detection in the brains 
of  M83+/- mice. A Average p-aSyn (S129) fluorescence signal (percentage of area) in the regions is highlighted by colored circles as follows: small 
circle (0.05–0.2%), medium circle (0.2–1%) and large circle (1–5%). Also see Supplementary Figure S4 for the low magnification (2X) panoramic 
views annotating select brain regions and S7B. Regions shown in 6A: (view in S4, Pons)  gigantocellular nuclei (GRN),  pontine reticular nuclei 
(Rt),  vestibular nuclei;  deep cerebellar nuclei; (view in S4, Midbrain)  substantia nigra,  red nucleus,  periaqueductal grey matter; (view in S4, 
Thalamus)  medial and lateral hypothalamus,  subthalamic nucleus,  ventromedial and ventrolateral thalamic nuclei. B Quantitative estimates 
of p-aSyn S129 immunopositivity (immunofluorescence signal intensity from two serial sections) in the GRN/Gi in cohorts of  M83+/- mice, expressed 
as percentage of the area (total average area/image: 625,000  um2) in 10X views (see Fig. 5A–C). C Quantitative estimates of the total number 
of neurons (NeuN immunofluorescence) in of GRN/Gi from cohorts of M83.+/- mice. Statistics in Fig. 6B–C: One-Way ANOVA followed by Tukey’s 
multiple column comparisons (PBS, n = 5; monomeric aSyn, n = 5; PFF aSyn DPI-30 and DPI-60, n = 3 and PFF aSyn DPI ≥ 108, n = 5; ****p < 0.0001; 
Error bars, Mean ± SD). (In Fig. 6B) Black asterisks represent significant differences between PBS and PFF aSyn-injected cohorts, while the grey 
asterisks indicate significant differences between monomeric aSyn and PFF aSyn-injected cohorts. Only significant differences are highlighted 
(Fig. 6B–C)



Page 16 of 20Theologidis et al. Acta Neuropathologica Communications           (2025) 13:32 

Fig. 6 (See legend on previous page.)
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of the study is that the observations have been made in 
transgenic M83 mice (overexpressing the aggregation 
prone, human mutant A53T aSyn), with an aggressive 
approach for inducing aSyn pathology (i.e. PFF aSyn 
delivery in the GRN). It is well established that naive M83 
mice (i.e. without exogenous PFF aSyn injections) also 
exhibit age-related decline in locomotion, impaired per-
formance in rotarod and a severe moribund phenotype 
near the terminal stage (lack of grooming, freezing, foot-
drop and paralysis) [29, 56]. However, it is noteworthy 
that the phenotypes reported in naive M83 mice appear 
at much later ages than those observed in our study: i.e. 
8–12 months in homozygous  M83+/+ and 20–24 months 
in heterozygous  M83+/- mice [29, 56].

It has also been reported that the onset and progres-
sion of the motor phenotypes in M83 mice are signifi-
cantly exacerbated by the exogenous delivery of PFF aSyn 
by peripheral routes, which results in initial aSyn pathol-
ogy in spinal cord and subsequently across the neuraxis 
[3, 4, 56, 59]. In other words, the movement disability 
in M83 mice following peripheral PFF delivery in these 
prior studies is not attributed to aSyn pathology in a dis-
tinct brain region(s), but largely considered to emanate 
from the loss of spinal motor neurons [56, 59]. In the 
present study, our observations suggest that the pro-
gressive reduction in the locomotor activity (Fig. 3A–C, 
DVC) and postural instability (Figs. 3A–C, 4A–C) in the 
PFF aSyn-injected cohort emerge in association with 
multi-focal aSyn pathology beyond the GRN, affecting 
the vestibular nuclei, cerebellar nuclei, red nucleus and 
the subthalamic nucleus (Figs. 5C, 6A–B, S7B), and to a 
lesser extent the lumbar spinal cord (Fig. S8B-D). There-
fore, from this pilot study, we are not able to conclusively 
establish that the observed phenotype is solely the result 
of aSyn aggregate pathology in the GRN.

Therefore, a refined approach to validate this model (of 
aSyn aggregation in GRN) is needed. It is important that 
the behavioral phenotypes (bradykinesia and postural 
instability) are assessed in an experimental paradigm 
with localized and relatively slower propagation of aSyn 
aggregation in GRN, instead of the aggressive PFF aSyn-
based approach used in this proof-of-concept study. In 
other words, it is plausible that the damage inflicted by 
PFF injection is not restricted to the nerve cell bodies in 
the GRN only but also affects the nerve terminals of the 
projection regions and nearby vestibular nuclei, which 
in turn represent a confounding factor with regards to 
interpreting the nature of motor disability in the model. 
Hence, for achieving localized aSyn aggregation in the 
GRN, future studies could exploit the direct delivery of 
monomeric aSyn (e.g., comparing wild type and mutant 
A53T aSyn) or ectopic expression of human aSyn 
transgene in the GRN using viral vectors [37, 38]. In this 

context, the injection of monomeric aSyn is considered 
a control experiment; however, our data show that given 
sufficient time, this can also trigger de novo aSyn aggre-
gation at the injection site (Fig. 5B, S7B; compare to PBS) 
and affect patterns of locomotion (Fig. 3A–G, DPI-120). 
These observations are reminiscent of a recent study 
which reported that intrastriatal injections of comparable 
amounts (2 μl of 5 μg/μl) of monomeric aSyn in wild type 
mice stimulates local microglial immune response, and 
defects in motor performance as early as 1 month post-
injection [25].

The AAV-based approach is also advantageous, since 
it could help dissect dysfunction in distinct neuronal 
sub-populations in the GRN, which potentially under-
lie the movement disability in this model. Technically, 
this is feasible in genetically modified rodents in which 
human transgene(s) expression can be achieved in target 
neuronal populations by the stereotaxic delivery of engi-
neered viral vectors, as demonstrated for cre-recombi-
nase expressing dopamingergic neurons in vivo [5]. Thus, 
we consider that the validation of this model of neurode-
generative aggregate pathology in the GRN, and further 
refinements to this experimental paradigm hold promise 
for novel translational approaches in PD and related dis-
orders. To illustrate, recent studies show that chemoge-
netic activation of Chx10 neurons in the GRN of rodents 
helps restore turning defects induced by striatal dopa-
mine deficiency following 6-OHDA administration [17].

In a larger context, several animal models based on 
aSyn overexpression (transgenic or through viral vec-
tor delivery) have been studied, and differ with regards 
to their fidelity in recapitulating features of movement 
disability in PD ((Reviewed elsewhere- [37, 38]). These 
studies show that the phenotypes in each model are also 
affected by the promoter driving aSyn expression, which 
in turn potentially dictates the spatiotemporal features 
of aSyn aggregation in distinct neuronal populations 
[21, 29, 54]. For instance, transgenic models with aSyn 
expression (A53T or E46K) under the control of prion 
promoter (Prnp) exhibit severe motor phenotypes, most 
likely due to age-related decline in spinal motor neu-
rons as mentioned above [29, 56, 59]. In comparison, 
the transgenic lines based on the thymus cell antigen 1 
(Thy1) promoter driven aSyn overexpression exhibit age-
related progression of motor features, as well as altered 
circadian rhythm and sleep [40, 55]. Hence, it would 
be interesting to assess the effects of direct PFF aSyn 
delivery in the GRN of Thy1-SNCA strains in relation 
to motor and non-motor phenotypes. Intriguingly, we 
found that the pattern of spontaneous locomotion in PFF 
aSyn injected  M83+/- mice was significantly affected dur-
ing the nocturnal phase (Fig. 3B–C). It is unclear whether 
this phenotype of reduced nocturnal activity potentially 
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reflects altered sleep–wake cycles and circadian rhythm 
disturbances, and is worth further investigations. Espe-
cially, given that subdivisions of the GRN and adjacent 
nuclei of reticular formation have been implicated in 
the REM sleep behavior disorder (RBD)- [46, 50], this 
could present an area for the follow-up studies evaluat-
ing the non-motor phenotypes (which were not analyzed 
in the current study). Lastly, there are isolated reports in 
the published literature showing that monomeric aSyn 
injection into the GRN of wild type mice leads to pro-
gressive decline in dopamine concentration and tyrosine 
hydroxylase mRNA expression in the striatum; however, 
behavioral outcomes were not assessed or reported [35]. 
Thus, characterizing the neurochemical aspects within 
the GRN and its associated subcortical motor circuitry 
in this model could further facilitate the identification of 
neural substrate(s) underlying the features of movement 
disability in this model.

Conclusion
In conclusion, we consider that our study highlights a 
crucial role of prodromal aSyn pathology in the GRN in 
features of movement disability in PD. We also anticipate 
that our data will stimulate novel hypotheses in model 
development for studying the significance of neuronal 
dysfunction in the motor circuitry of the GRN in relation 
to phenotypes relevant to PD.
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