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Abstract 

Background Previous studies have reported that the tumor immune microenvironment (TIME) was associated 
with the prognosis of lung cancer patients and the efficacy of immunotherapy. However, given the significant chal-
lenges in obtaining specimens of brain metastases (BrMs), few studies explored the correlation between the TIME 
and the prognosis in patients with BrMs from lung adenocarcinoma (LUAD).

Methods Transcript profiling of archival formalin-fixed and paraffin-embedded specimens of BrMs from 70 LUAD 
patients with surgically resected BrMs was carried out using RNA sequencing. An immune scoring system, the green-
yellow module score (GYMS), was developed to predict prognosis and immune characteristics in both BrMs and pri-
mary LUAD using Weighted Correlation Network analysis (WGCNA) and GSVA analysis. We comprehensively evalu-
ated the immunological role of GYMS based on gene expression profile of LUAD BrMs by systematically correlating 
GYMS with immunological characteristics and immunotherapy responsiveness in the BrMs. Immunohistochemistry 
was applied for validation.

Results We found that the high-GYMS group had better clinical prognosis and inflamed immune landscape includ-
ing high infiltrations of various immune cells, increased immunomodulatory expression, and enriched immune-
related pathways by using RNA-seq and immunohistochemical analysis. Low-GYMS group presented a lacked 
immune infiltration characteristic. Besides, the high-GYMS group had lower TIDE score and higher T-cell inflamed 
score than low-GYMS group. The GYMS has been validated in independent BrMs cohorts and primary NSCLC cohort 
treated with anti-PD-1/PD-L1, showing strong reproducibility and stability in both primary LUAD and BrMs. In addi-
tion, we construct a GYMS-related risk signature for patients with LUAD BrMs to predict prognosis.

Conclusions We identified two immune-related subtypes which used to estimate prognosis and immune character-
istics and developed a reliable GYMS-related risk signature in LUAD BrMs. These results will enhance the understand-
ing of the immune microenvironment in LUAD BrMs and lay the theoretical foundation for the development of per-
sonalized therapies for LUAD patients with BrMs.
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Introduction
Brain metastases (BrMs) are the most prevalent malig-
nant brain tumors, even tenfold more common than 
primary malignant brain tumors [1, 2]. Among all types 
of cancer, lung adenocarcinoma (LUAD) is the most 
common cancer that metastasizes to the brain [3]. 
Unfortunately, patients with BrMs have significant mor-
tality with poor median overall survival ranging from 7 
to 13  months[4]. The conventional treatment pattern, 
including a combination of surgery, chemotherapy, and 
radiotherapy, has shown limited efficacy [5].

Recently, immune checkpoint inhibitors (ICIs), single-
agent or combination strategies, is generally become the 
treatment option for patients with advanced NSCLC [6, 
7]. Subgroup analyses in clinical trials and retrospective 
analyses provided evidence for the effective treatment 
of ICIs in NSCLC patients with BrMs, although there is 
currently a lack of large clinical trials specifically focus-
ing on BrMs [8]. The tumor immune microenviron-
ment is a key factor in immunotherapy. BrMs exhibit a 
distinct tumor immune microenvironment compared to 
primary lung cancer, as demonstrated by previous stud-
ies [9, 10]. Meanwhile, there was heterogeneity in the 
tumor immune microenvironment among different indi-
viduals. Therefore, it is crucial to characterize the specific 
immune microenvironment of each patient with BrMs to 
tailor individualized therapeutic approaches. New thera-
peutic strategies guided by biomarkers for the stratifica-
tion of LUAD patients with BrMs are urgently needed to 
improve overall survival of BrMs patients.

Few prognostic and immune biomarkers in lung can-
cer with BrMs have been previously reported. It has 
been observed that BrMs patients with high expression 
of TIM-3 and LAG-3 in CD3+ T cell was also associated 
with longer survival (P < 0.05) [10]. Additionally, a tumor 
microenvironment classification, based on PD-L1 sta-
tus and tumor-infiltrating lymphocytes (TILs), has been 
proposed [11]. A retrospective study showed that both 
PD‐L1 positivity on tumor cells and high infiltration of 
CD8 + T cell might have better post‐surgery outcomes in 
lung cancer patients after intracranial resection of BrMs 
[12]. However, there is still a lack of systematic studies 
to explore immune-related prognostic models in BrMs. 
Therefore, it is imperative to investigate the immune-
related prognostic biomarkers in both BrMs and pri-
mary lung cancer. In this study, we aimed to develop a 
biomarker using RNA-seq analysis for 70 LUAD patients 
with BrMs to predict prognosis and characterize the 
immune landscape in both BrMs and primary LUAD.

Materials and methods
Figure 1 shows the workflow of this study.

Study cohort
Seventy Advanced LUAD patients with BrMs were 
diagnosed and enrolled at the Central South University 
Xiangya Hospital between 2017 and 2021 (Table  S1). 
Resected BrMs samples and clinical data were col-
lected. Overall survival (OS) was measured as the inter-
val between the date of the surgical resection of brain 
metastases (BrM) and the date of death or the end of 
follow-up period. The study was approved by the ethics 
committee of Xiangya hospital, Central South Univer-
sity (No.202207391). We also obtained two independ-
ent NSCLC cohorts, including TCGA-LUAD and 
GSE135222. The Cancer Genome Atlas (TCGA) data of 
LUAD cohort: the RNA-seq data (COUNT) and clini-
cal data (https:// portal. gdc. cancer. gov/) was downloaded 
by utilizing "TCGAbiolinks" R package [13]. Then, the 
COUNT values were transformed into transcripts per 
kilobase million (TPM) values. An immunotherapy 
cohort of NSCLC from Samsung Medical Center (SMC 
cohort), GSE135222, with the gene expression pro-
file and survival data were downloaded from the Gene 
Expression Omnibus (GEO). In the SMC cohort, DCB/
responder were derived from patients who achieved par-
tial response (PR) or stable disease (SD) that lasted more 
than 6  months. NDB/non-responder were derived from 
patients who had progressive disease (PD) or SD that 
lasted less than 6 months [14]. In addition, we obtained 
three independent BrMs cohorts for external valida-
tion of the immune scoring system. A NSCLC BrMs 
cohort (n = 43) with gene expression data from Sun Yat-
Sen University Cancer Center was downloaded from 
OMIX (https:// ngdc. cncb. ac. cn/ omix/ previ ew/ Spe7I 
DiX, ID: OMIX575). The gene expression data and clini-
cal data from the GSE50493 (Melanoma BrMs) and 
GSE173661(Breast cencer BrMs) also were downloaded 
from GEO.

Next‑generation sequencing
BrMs tissues were collected and prepared into forma-
lin-fixed paraffin-embedded (FFPE) samples. A total of 
15 FFPE slides/sample were utilized, with a minimum 
tumor content of 20% confirmed by histological exami-
nation by pathologists. RNA was extracted from FFPE 
brain metastasis samples. All RNA with a percentage 
of RNA fragments > 200 nucleotides (DV200) ≤ 50% 

https://portal.gdc.cancer.gov/
https://ngdc.cncb.ac.cn/omix/preview/Spe7IDiX
https://ngdc.cncb.ac.cn/omix/preview/Spe7IDiX
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skipped fragmentation and proceeded to library prepa-
ration. Then, cDNA synthesis and NGS library prepa-
ration were performed using NEBNext® Ultra™ II 
Directional RNA Library Prep Kit (NEB#E7760L). The 
library was quantitated using Qubit 3.0 (life Invitrogen, 
USA), and quality was assessed with LabChip GX Touch 
(PerkinElmer, USA). After library quantification, the 
samples were subjected to high-throughput sequencing 

using DNBSEQ-T7. After removal of terminal adaptor 
sequences and low-quality data by using fastp (version: 
0.19.5) [15] and removal of rRNA reads through align-
ing clean reads to the rRNA database (download from 
NCBI) by using bowtie2 (version:2.2.8), clean reads 
without known rRNA were aligned to the reference 
human genome (hg19) through STAR (version 020201) 
[16]. A series of quality control metrics were computed 

Fig. 1 The workflow of this study
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by using RNA-SeQC assessment [17]. A threshold 
of ≥ 80 million mapped reads and ≥ 10 million junction 
reads per sample was set. The procedure details can be 
found in Supplementary Method.

WGCNA construction and functional annotation
The gene expression data of our Xiangya BrMs 
cohort with 70 BrMs samples was used to construct 
a co-expression network by applying Weighted Gene 
Co-expression Network Analysis (WGCNA). Data pro-
cessing of WGCNA based on the protocol of Horvath 
Lab UCLA (https:// horva th. genet ics. ucla. edu/ html/ 
Coexp ressi onNet work/ Rpack ages/ WGCNA/). 149 
genes from the green-yellow module (Table  S2) were 
chosen for gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyses by 
using the “clusterprofiler” R package with a cutoff value 
of adjust P < 0.05. Then, the Cytoscape (version 3.9.0) 
[18] was used to map the network of the green-yellow 
module and screened and visualized the top 10 genes 
through the cytoHubba method [19].

Construction of immune scoring system and GSEA
To generate robust biomarkers to predict the progno-
sis and immune phenotype in LUAD BrMs, we con-
structed an immune scoring system by utilizing the 
GSVA method based on the expression of green-yellow 
module genes, which named the green-yellow module 
score (GYMS).

To explore the difference in biological process and 
pathway terms between the high-GYMS and low-GYMS 
groups, the GSEA was used via the R package "cluster-
Profiler". The gene sets of "c5.go.bp.v7.4.entrez.gmt", "c2.
cp.kegg.v7.4.entrez.gmt", and "h.all.v7.4.1.entrez.gmt" 
were downloaded from the MSigDB (https:// www. gsea- 
msigdb. org/ gsea/ msigdb) for performing the GSEA.

Immunological characteristics based on RNA‑seq data 
in LUAD BrMs
The "ESTIMATE" R package was used to evaluate the 
general immune infiltration in BrMs samples, which is 
a tool that can predicts tumor purity by using gene sig-
natures [20]. Then, to estimate the detailed immune cell 
infiltrations, we used six independent algorithms through 
the TIMER2.0 tool, including the Timer, CIBERSORT, 
MCP-COUNTER, QUANTISEQ, xCell, and ssGSEA 
[21–23]. CIBERSORT evaluate the proportions of 22 
immune cells based on RNA-seq data by applying decon-
volution algorithm [24]. MCP-COUNTER calculate 8 
immune-cell lineage scores [25]. Meanwhile, the single 
sample gene set enrichment analysis (ssGSEA) algorithm 

was utilized to estimate the infiltration of 28 immune 
cells based on previously published gene sets from Char-
oentong et  al. study [26]. Moreover, we collected gene 
sets of astrocyte, mature astrocyte, reactive astrocyte, 
and microglia signature from V. K. Han et al. study [27], 
and then using ssGSEA to estimate the infiltration abun-
dance of four brain resident cells.

The prediction for therapeutic response
The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm and subclass mapping (SubMap) method 
were utilized to predict clinical responses to ICIs. TIDE 
(http:// tide. dfci. harva rd. edu) is a computational method 
used to assess tumor immune escape potential and pre-
dict response to immunotherapy [28]. Responders were 
derived from patients who achieved complete responses, 
partial responses or stable disease control in response to 
anti-PD-1 therapy. Non-responders were derived from 
patients who had progressive disease [29]. The SubMap 
(https:// www. genep attern. org/) was used to compare 
the similarity of the gene expression data of our group 
to previous melanoma cohort treated PD-1 inhibitor or 
CTLA-4 inhibitor [30]. In addition, a pan-cancer T cell-
inflamed score was developed by Ayers et  al., including 
18 inflammatory genes, which could be an inflammatory 
biomarker and predict the clinical response of ICIs [31]. 
Here, T cell-inflamed score was calculated as described 
previously [32].

Gene expression profile data of human cancer cell lines 
were obtained from the Cancer Cell Line Encyclopedia 
(CCLE) project (https:// depmap. org/ portal/). Drug sen-
sitivity data of human cancer cell lines were obtained 
from the Cancer Therapeutics Response Portal (CTRP) 
(https:// porta ls. broad insti tute. org/ ctrp. v2.1/) and   Pro-
filing Relative Inhibition simultaneously in Mixtures 
(PRISM) Repurposing dataset (19Q4) (https:// depmap. 
org/ portal/ prism/). To estimate the drugs response in 
LUAD BrMs, the R package "pRRophetic" was employed 
to calculate the area under the dose–response curve of 
each BrMs sample [33, 34]. The area under the curve 
(AUC) values were a measure indicator of drug sensitiv-
ity, and the lower AUC values mean the higher sensitivity 
to drugs in the two datasets. K-nearest neighbor (k-NN) 
imputation was used to impute the missing AUC values, 
as the previous study described [33]. Compounds with 
more than 20 percent of missing data were excluded 
before imputation.

Establishment of GYMS‑related risk signature
The differentially expressed analysis was conducted 
through "DESeq2" R package. Based on the differentially 
expressed genes (DEGs) between high- and low-GYMS 
BrMs, Univariate Cox analysis was used to screen for 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://tide.dfci.harvard.edu
https://www.genepattern.org/
https://depmap.org/portal/
https://portals.broadinstitute.org/ctrp.v2.1/
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
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prognostic genes in the Xiangya cohort. Then, prognos-
tic genes were put into the least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis uti-
lizing the "glmnet" R package [35, 36]. Finally, a GYMS-
related risk signature of LUAD BrMs was developed by 
weighting the Cox regression coefficients to estimate a 
risk score for each BrMs patient, classifying patients as 
low- and high-risk groups based on the median values 
of 70 BrMs samples. Kaplan–Meier analysis with the 
log-rank test was used to appraise the prognostic perfor-
mance of the GYMS-related risk signature. To assess the 
sensitivity and specificity of the risk signature, the Time-
dependent receiver operating characteristic (ROC) curve 
was displayed using the "timeROC" R package.

Immunohistochemistry
All tumor slides were stained with antibodies against 
CD8 (Cat. ab209775, 1:2000, Abcam), CD68(ZM-0060 
Ready-to-Use, ZSGB-BIO), and CD163(ZA-0428 
Ready-to-Use, ZSGB-BIO). The average from five inde-
pendent areas containing the greatest abundance was cal-
culated as the density of CD8+ T cells, CD68+ cells, and 
CD163+ cells under 200 × magnification (Table S3).

Statistical analysis
All statistical analyses were performed by using R soft-
ware (Version 4.1.0). Non-parametric Mann–Whitney 
U test was used to compare gene expression level, ESTI-
MATE score, immune cells abundance, TIDE score, or 
sensitivity score. The correlation was analyzed by using 
the Spearman correlation test. The fisher exact test was 
used to compare the proportion of responders to immu-
notherapy. Survival analyses were conducted using the 
Kaplan–Meier method based on the log-rank test. The 
multiple hypothesis correction was performed for the 
comparison of multiple categories based on the false 
discovery rate (FDR) method between the two groups in 
Xiangya cohort (Table S4).

Results
Identification of the green‑yellow module involved 
in CD8 + T cells and CD274 expression in LUAD BrMs 
via WGCNA
The CD8+ T cell level and PD-L1 expression are essen-
tial factors in determining the tumor microenvironment 

classification and the responsiveness of ICIs in NSCLC 
[37]. Thus, we performed weighted gene co-expression 
network analysis (WGCNA) by integrating the infiltra-
tion level of CD8+ T cells, cytotoxic lymphocytes, and 
CD274 expression. In our study, the top-5000 variation 
genes in RNA-seq data and power of β = 4 (scale free 
 R2 = 0.89) as the soft threshold were selected to build 
the co-expression network. The analysis indicated that 
13 co-expression modules were identified by applying 
the dynamic tree cut method (Fig.  2A, Figure S1A-F). 
Furthermore, we explored the relationships between the 
module gene and molecular traits, including CD8+ T cell 
infiltrations, cytotoxicity lymphocytes infiltrations, and 
CD274 expression. The heatmap of module trait corre-
lations showed that the green-yellow module was highly 
positively correlated with CD8+ T cells and CD274 levels 
in LUAD BrMs, which meant that the green-yellow mod-
ule (149 genes) may play an essential role in estimating 
the tumor immune microenvironment classification and 
the clinical response of ICIs (Fig. 2B). The scatter plots in 
Fig. 2C, D showed similar results. Thus, the green-yellow 
module was recognized as the key module.

Furthermore, the GO and KEGG analysis demon-
strated that the genes of the green-yellow module were 
enriched in various immune processes and pathways. 
GO analysis indicated that lymphocyte activation, regu-
lation of T cell activation, T cell activation and positive 
regulation of leukocyte activation were enriched in the 
green-yellow gene set (Fig.  2E). KEGG analysis showed 
that hematopoietic cell lineage, natural killer cell medi-
ated cytotoxicity, cytokine-cytokine receptor interac-
tion, T cell receptor signaling pathway were enriched 
in green-yellow module (Fig.  2F). These pathways had 
been demonstrated to be linked to immune process and 
immunotherapy [37, 38]. This shown the importance of 
the green-yellow module genes for the immune microen-
vironment and immunotherapy in LUAD BrMs, and it is 
required to further explore its characteristics and roles.

Construction and immune prediction of GYMS
Considering the individual differences in the immune 
microenvironment and fully exploiting the predictive 
immune value of green-yellow module genes, we con-
structed an immune scoring system (green-yellow mod-
ule score, GYMS) by applying the GSVA algorithm based 

Fig. 2 Module-trait relationships and green-yellow-related enrichment analysis. A Cluster dendrogram of DEGs based on different metrics. Each 
color depicts a module that possesses weighted co-expressed genes. B Correlation of module eigengenes to CD8+ T cells and PD-L1 in LUAD 
BrMs. The values in the cells of each column are presented as p-value. Red represents a positive correlation, and blue represents a negative 
correlation. *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001. C, D Scatter plot show the correlation between Gene significance for CD8+ T cells 
or CD274 and module eigengenes in greenyellow module. E, F Gene Ontology and KEGG enrichment analysis for 149 genes in greenyellow module

(See figure on next page.)



Page 6 of 18Xiao et al. Acta Neuropathologica Communications          (2024) 12:181 

Fig. 2 (See legend on previous page.)
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on 149 genes of green-yellow module in Xiangya BrMs 
cohort (n = 70). These patients were divided into low-
GYMS (n = 35) and high-GYMS (n = 35) group based on 
the median value 0.0051 as a constant threshold across 
all cohort. To explore the performance of GYMS to pre-
dict the outcome in LUAD BrMs patients, we conducted 
a survival analysis for patients with survival informa-
tion (n = 55). The survival analysis indicated that the 
high-GYMS group (n = 29) had a better OS benefit than 
low-GYMS group (n = 26) in our Xiangya BrMs cohort 
(P = 0.025, Fig. 3A). Moreover, the result of survival anal-
ysis had been verified in an immunotherapy cohort in 
lung cancer from Samsung Medical Center (high-GYMS 
vs low-GYMS; P = 0.06, Figure S2A) and the TCGA-
LUAD cohort (high-GYMS vs low-GYMS; P = 0.031, Fig-
ure S3A). Furthermore, we investigated the correlation 
between the GYMS and clinical molecular information. 
Our analysis revealed no significant difference in the pro-
portion of sex, age, smoking status, and molecular muta-
tions between the high- and low-GYMS groups (Figure 
S4). Nevertheless, we observed a higher proportion of 
patients with KRAS mutations in the high-GYMS group 
(high-GYMS vs low-GYMS, 23.5% vs 6.1%), although sta-
tistical significance was not reached (Figure S4).

Apart from the prognostic value, the GSEA was per-
formed to explore the transcriptomic features produced 
by high-GYMS BrMs. By using GO, KEGG, and Hallmark 
gene sets as references, GSEA was performed between 
the high-GYMS and low-GYMS groups in patients from 
the Xiangya cohort. The level of GYMS in LUAD BrMs 
patients was positively correlated with the immune-
related biological process and pathways, such as adaptive 
immune response, antigen processing and presentation, 
chemokine signaling pathway, natural killer cell mediated 
cytotoxicity, IFNG response, and inflammatory response 
(Figure S5; Table S5). Therefore, high-GYMS BrMs were 
correlated with high antigen presentation capacity and 
immune cell infiltrations.

Then, we evaluated the correlation between immuno-
logical characteristics and GYMS in LUAD BrMs. The 
GYMS positively correlated with the multiple immu-
nomodulators, including MHC, Co-stimulators, and 
chemokines, which was consistent with the GSEA results 
(Fig.  3C). The high-GYMS group had higher expression 

of MHC I/II molecules than the low-GYMS group, show-
ing a solid antigen presentation capacity (Figure S6D). A 
majority of chemokines and acceptor, including CXCL9, 
CXCL10 and CXCR3, were significantly upregulated in 
the high-GYMS group (P < 0.01; Figure S6A), promoting 
the recruitment of effector immune cells. Generally, the 
high expression of immune checkpoint molecules such 
as PD-L1/PD-1/CTLA4 was reported in inflamed TIME 
[39]. We found that the GYMS was positively corre-
lated with many immune checkpoint molecules, includ-
ing PD-L1, PD-1, CTLA-4, HAVCR2, LAG3, IDO1, 
PDCD1LG2, TIGIT, and BTLA (P < 0.01; Fig. 3B).

The immune score, stromal score and ESTIMATE score 
were also positively correlated with the GYMS (P < 0.001, 
Fig.  3F). High-GYMS had higher immune score, stro-
mal score, and ESTIMATE score than the low-GYMS 
(P < 0.0001, Fig.  3G). Next, the correlation between 
GYMS and immune cells infiltration was evaluated 
using six different algorithms. We found that GYMS was 
positively correlated with overall level of immune cells 
(Fig.  3D, E). In addition to showing superior immune-
activated cells (e.g. cytotoxic lymphocytes, CD8+ T 
cells, NK cells), high-GYMS BrMs also indicated a more 
increased abundance of immunosuppressive cells (e.g. 
M2-type TAMs, MDSC, Treg, and fibroblast). Mean-
while, the consistent results were observed in primary 
lung cancer in two external cohorts (the SMC immu-
notherapy cohort and the TCGA-LUAD cohort; Figure 
S2D-G, Figure S3B-E). Then, resident cells (astrocyte and 
microglia) in brain also were explored in this study. High-
GYMS BrMs had higher infiltrations of the microglia and 
reactive astrocyte than low-GYMS BrMs (P < 0.01, Figure 
S7A,B). Therefore, these results demonstrated that high-
GYMS BrMs were correlated with the inflamed tumor 
microenvironment that may well be susceptible to immu-
notherapy. However, it also indicates significant immune 
escape in high-GYMS BrMs.

The above results were validated in protein level. 66 
FFPE samples from BrMs of LUAD was obtained to con-
duct immunohistochemical staining for immune cell 
markers (Table S3). High-GYMS BrMs had a higher infil-
trating density of CD8+ T cells, CD68+ macrophages, 
and CD163+ M2 macrophages compared to low-GYMS 

(See figure on next page.)
Fig. 3 Immune characteristics of the green-yellow module score (GYMS). A Kaplan–Meier curve shows the effect of GYMS on OS with the constant 
threshold of 0.0051. B Heatmap shows the spearman’s correlation between GYMS and co-inhibitors. C Heatmap shows the expression 
in immunomodulators (MHC I, MHC II, co-stimulators, chemokines, and receptors) between low- and high-GYMS. D Correlation between GYMS 
and immune cells. E Correlation between GYMS and the infiltration levels of seven types of immune cells (CD8+ T cells, NK cells, CTL, macrophages, 
dendritic cells, MDSC, and Treg), which were estimated using six independent algorithms. F Heatmap shows the spearman’s correlation 
between GYMS and ESTIMATE score. G Comparison of ESTIMATE score, immune score, and stromal score between low- and high-GYMS



Page 8 of 18Xiao et al. Acta Neuropathologica Communications          (2024) 12:181 

Fig. 3 (See legend on previous page.)



Page 9 of 18Xiao et al. Acta Neuropathologica Communications          (2024) 12:181  

Fig. 4 Immunohistochemical analysis shows the immune infiltration characteristics. Comparison of infiltrating density of CD8+ T cells (A, B), 
CD68+ macrophages (C, D), and CD163+ M2 macrophages (E, F) between high- and low-GYMS group. All tumor slides were stained with antibodies 
against CD8 (Cat. ab209775, 1:2000, Abcam), CD68(ZM-0060 Ready-to-Use, ZSGB-BIO), and CD163(ZA-0428 Ready-to-Use, ZSGB-BIO). Scale bars: 
100 μm in 200x and 50 μm in 400x
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BrMs (P < 0.05, Fig. 4B, D, F). Representative images are 
shown in Fig. 4A, C, E.

To further explore new immune-related targets, the 
Cytohubba functions of the Cytoscape were used to 
discover ten most essential hub genes in the green-
yellow module, including CD8A, LAG3, TMEM176B, 
TNFRSF13B, SH2D2A, KLHL6, PARP15, CXCL10, 
IGLL5, and SLAMF6 (Figure S1G). The CD8A is the 
marker gene of CD8+ T cells and the LAG3 is the 
important immune checkpoint molecule, which further 
demonstrates the accuracy of the above results. Given 
the clinical utility of 10 genes would be easier than 149 
genes, utilizing the expression profiles of these 10 genes, 
we developed a 10-gene scoring system using the GSVA 
method. Nonetheless, our analysis revealed no significant 
difference in prognosis between the high and low score 
groups, although there was a trend toward longer median 
survival in the high score group (P > 0.05; Figure S1H).

The potential role of GYMS in ICIs responsiveness
To investigate whether GYMS can predict the clinical 
response to ICIs, we calculated the TIDE score in our 

Xiangya BrMs cohort. We found that the GYMS was pos-
itively correlated with CD274 (r = 0.34; P = 0.0042), IFNG 
(r = 0.71; P < 0.0001), CD8 (r = 0.64; P < 0.0001), and Dys-
function (r = 0.59; P < 0.0001) and negatively correlated 
with MDSC (r = − 0.32; P = 0.0061), TAM M2 (r = − 0.54; 
P < 0.0001), and Exclusion (r = − 0.37; P = 0.0018) 
(Fig.  5B). Besides, a strong negatively correlation 
(r = − 0.37; P = 0.0015) between GYMS and TIDE score 
had been found in the Xiangya BrMs cohort (Fig.  5B). 
The high-GYMS group had a borderline significant 
lower TIDE score than the low-GYMS group (P = 0.076, 
Fig.  5D). It has been reported that the low-TIDE score 
is a surrogate biomarker to predict a good response to 
cancer immunotherapy [28]. As expected, higher propor-
tion of responder was found in the high-GYMS group 
compared to low-GYMS group (Fig. 5C). Meanwhile, we 
also used the SubMap algorithm to evaluate the clini-
cal response to ICIs (PD-1 and CTLA-4 inhibitors) in 
high- and low-GYMS patients with LUAD BrMs. In this 
study, the high-GYMS BrMs displayed more promise in 
response to anti-PD-1 inhibitors (Bonferroni-corrected 
P = 0.008, Fig. 5E). In addition, we found that GYMS was 

Fig. 5 Immunotherapeutic responsiveness of the green-yellow module score (GYMS). A Scatter plot shows the correlation between GYMS 
and T-cell inflamed score. B Bar plot shows the correlation between GYMS and TIDE score. C Comparison of the proportion of the responder 
between low- and high-GYMS. D Comparison of the TIDE score between low- and high-GYMS. E Immunotherapeutic responses to anti-CTLA-4 
and -PD-1 treatments in low- and high-GYMS patients
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positively correlated with T-cell inflamed score (r = 0.85; 
P < 0.0001) that can predict the clinical response of ICIs 
(Fig.  5A). Meanwhile, the expression of several thera-
peutic immune checkpoints, including PD-L1, CTLA-
4, TIM-3, and LAG-3, was significantly higher in the 
high-GYMS group (P < 0.05, Figure S6B). Consistent 
with above results, in the anti-PD-1/PD-L1 NSCLC 
cohort, the high-GYMS group had a higher proportion of 
responders with durable clinical benefits (DCB) than the 
low-GYMS group (Figure S2B,C). Therefore, these results 
indicated that the GYMS is a potential biomarker with 
applications in predicting immunotherapy response in 
both LUAD patients with and without BrMs.

GYMS predicts immune phenotypes in external validation 
cohort of BrMs
In a NSCLC BrMs cohort (n = 43) from Sun Yat-Sen 
University Cancer Center, we observed that high-GYMS 
(n = 25) had higher expression of Co-stimulators and 
chemokine than low-GYMS (n = 18), such as CXCR3, 
CXCL9, CXCL10, CCL4,  and CCL3 (Fig.  6C). The 
GYMS also was positively correlated with immune score 
(P < 0.001; Fig.  6A). Meanwhile, GYMS was uncovered 
to be positively correlated with T cells, CD8+ T cells, 
Cytotoxic lymphocytes, NK cells, Myeloid dendritic 
cells, monocytes, Treg, and MDSC (P < 0.05, Fig. 6D, E). 
GYMS was positively correlated with the T-cell inflamed 
score, showing high-GYMS BrMs had an inflamed tumor 
microenvironment (r = 0.58, P < 0.0001, Fig.  6F). Moreo-
ver, GYMS was negatively correlated with TIDE score; 
Reduced TIDE score was found in the high-GYMS group 
(P < 0.05, Fig.  6G). As expected, borderline significant 
higher proportion of responder was found in the high-
GYMS group compared to low-GYMS group (P = 0.064; 
Fig. 6H). Then, the SubMap algorithm was used to evalu-
ate the clinical response to ICIs, showing the high-GYMS 
BrMs might have better response to anti-PD-1 inhibitors 
(Bonferroni-corrected P = 0.024, Fig.  6I). Furthermore, 
GYMS was also positively correlated with expression of 
several immune checkpoints, including CD274, PDCD1, 
CTLA4, TIM3, LAG3, TIGIT (P < 0.05, Fig.  6B). There-
fore, the GYMS can distinguish immune phenotypes and 

immunotherapy responsiveness in the external validation 
cohort of NSCLC BrMs.

To broaden the application of GYMS, we explored 
the performance in Pan-cancer BrMs cohorts. In mela-
noma BrMs and breast cancer BrMs, the T-cell inflamed 
score was highly positively correlated with the GYMS 
(P < 0.0001, Figure S8A,E). Besides, the higher CD274 
expression and lower TIDE score was found in the high-
GYMS group compared to low-GYMS group (Figure S8 
B,C,F,G). As expected, the high-GYMS BrMs may ben-
efit more from anti-PD1 therapy in Pan-cancer BrMs by 
using SubMap algorithm (P < 0.01, Figure S8D,H).

Identification of potential therapeutic drugs for low‑GYMS 
group
To improve the poor prognosis of low-GYMS BrMs 
patients, we employed two methods to identify poten-
tial drugs based on the drug response data from the 
CTRP and PRISM database. On the one hand, differen-
tial drug response between low-GYMS (bottom quintile) 
and high-GYMS (top quintile) groups was performed to 
determine drugs of lower estimated AUC values in the 
low-GYMS group with log2FoldChange > 0.10 and Wil-
cox rank sum test P < 0.05 (Fig. 7A). On the other hand, 
correlation analysis between the GYMS and estimated 
AUC values was utilized to search drugs with positive 
correlation coefficient with Spearman’s correlation coeffi-
cient > 0.25 (Fig. 7A). Then, 2 CTRP-derived compounds 
(ABT-737 and navitoclax) and 1 PRISM-derived com-
pound (romidepsin) had lower estimated AUC values in 
low-GYMS group and positively correlated with GYMS 
(Fig.  7B,C). Therefore, the three compounds were iden-
tified as potential candidate drugs for low-GYMS BrMs 
patients.

Development and validation of a GYMS‑related risk 
signature
To identify a biomarker to predict prognostic value, 
we constructed a GYMS-related risk signature in the 
Xiangya BrMs cohort. Differential expression analy-
sis was used between the high-GYMS (n = 35) and 
low-GYMS (n = 35). A total of 354 differential expres-
sion genes (DEGs) with  log2FC > 1 and adjust P < 0.05, 

Fig. 6 Immune characteristics and immunotherapeutic responsiveness of GYMS in OMIX575 cohort (43 BrMs). A Heatmap shows the spearman’s 
correlation between GYMS and ESTIMATE score. B Heatmap shows the spearman’s correlation between GYMS and co-inhibitors. C Heatmap shows 
the expression in immunomodulators (MHC I, MHC II, co-stimulators, chemokines, and receptors) between low- and high-GYMS. D Correlation 
between GYMS and immune cells. E Correlation between GYMS and the infiltration levels of seven types of immune cells (CD8 + T cells, NK cells, 
CTL, macrophages, dendritic cells, MDSC, and Treg), which were estimated using six independent algorithms. F Scatter plot shows the correlation 
between GYMS and T-cell inflamed score. G Bar plot shows the correlation between GYMS and TIDE score. H Comparison of the proportion 
of the responder between low- and high-GYMS. I Immunotherapeutic responses to anti-CTLA-4 and -PD-1 treatments in low- and high-GYMS 
patients

(See figure on next page.)
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including 283 up-regulated genes and 71 down-regu-
lated genes (Fig.  8A; Table  S6). Then, in 55 BrMs sam-
ples with survival information, the GYMS-related risk 
signature composed of 4 genes (MAB21L1, C14orf132, 
IL12RB1, and CCR2) was developed based on the 354 
DEGs by applying Univariate Cox and LASSO Cox anal-
ysis (Fig.  8B, C; Table  S7). Risk scores were calculated 
for each sample (risk score = 0.084* MAB21L1 + 0.029* 
C14orf132 + (− 0.005)* IL12RB1 + (− 0.077)*CCR2). 
BrMs patients of LUAD were divided into low-risk group 
(n = 28) and high-risk group (n = 27) using the median 
value as threshold (Fig. 8D). As shown in Fig. 8E, BrMs 
patients with high-risk had significantly shorter over-
all survival than those patients with low-risk (log-rank 
P < 0.0001), and consistent results were acquired in two 
external validation sets (the immunotherapy cohort and 
the TCGA-LUAD cohort; P < 0.05, Figure S9A, S10A). 
The time-dependent AUC of the risk signature was 0.66, 
0.74, and 0.77 at 1-, 2-, and 3-year, respectively, which 

showed robust predictive value of the GYMS-related risk 
signature (Fig. 8F). Simultaneously, the AUC values at 1, 
2, and 3 years for the GYMS-related risk signature out-
performed those markers derived from immune score, 
CD8+ T cells, and CTL (Fig.  8F). The prognostic value 
of the risk signature was further validated in two exter-
nal cohorts (Figure S9B,S10B). Then, the effect of the risk 
signature on the prognosis of BrMs patients was further 
validated. We found that the higher risk score corre-
lated with poor prognosis in the univariate Cox regres-
sion analysis, which was statistical significance (P < 0.001; 
HR = 67.604, 95% CI 8.819–518.264, Fig. 8G). Next, three 
factors (Postoperative radiotherapy, Age, and GYMS-
related risk signature) with statistical significance in 
univariate Cox analysis were imported into Multivariate 
Cox regression analysis (Fig. 8GH), and indicated that the 
GYMS-related risk signature was an independent prog-
nostic biomarker in LUAD BrMs and primary LUAD 
by using the Xiangya cohort, the SMC immunotherapy 

Fig. 7 Identification of potential therapeutic drugs for low-GYMS BrMs patients. A The workflow for identifying drugs with higher drug sensitivity 
in low-GYMS BrMs patients. B Spearman’s correlation analysis and differential drug response analysis of 2 CTRP-derived compounds. C Spearman’s 
correlation analysis and differential drug response analysis of 1 PRISM-derived compounds

Fig. 8 Developing a GYMS-related prognostic signature using LASSO Cox regression. A Volcano plot of differently expression genes 
between the high- and low-GYMS group. The x-axis range is from − 6 to 10. B, C LASSO Cox analysis identified genes most correlated to overall 
survival in the Xiangya cohort. D Visualization of the association of the risk scores with survival status and gene expression profiles in LUAD BrMs. 
E Kaplan–Meier survival analysis of low- and high-risk group in LUAD BrMs. F Comparison of the 1-,2-,3-year AUC value between the GYMS-related 
signature and other similar score, including Stromal score, Immune score, ESTIMATE score, CD8+ T cell infiltration, and CTL infiltration in LUAD 
BrMs. G, H Forest plot of the GYMS-related risk signature in univariate and multivariate cox analysis. CTL: Cytotoxic T Lymphocyte. KPS: Karnofsky 
Performance Status

(See figure on next page.)
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cohort in NSCLC (Figure S9C,D), and the TCGA-LUAD 
cohort (Figure S10C,D) (P < 0.05). In addition to GYMS-
related risk signature, Age and Postoperative radiother-
apy are also independent prognostic factors in LUAD 
patients with BrMs (P < 0.05; Fig.  8H). Therefore, our 
findings confirmed that the GYMS-related risk signature 
could be used as a valuable prognostic indicator in LUAD 
patients with or without BrMs.

Discussion
Overall, brain metastases (BrMs) exhibit a distinct 
tumor immune microenvironment [9]. Meanwhile, 
there exists heterogeneity in the tumor immune micro-
environment among different individuals with BrMs. 
We developed an immune scoring system (GYMS) 
to characterize the immune landscape of each LUAD 
patients with BrMs and to predict prognosis. High-
GYMS BrMs presented elevated infiltration of both 
innate and adaptive immune cells, indicative of an 
inflamed immune landscape, thus defining them as 
the high-immunity subtype. Low-GYMS BrMs show 
a scarcity of infiltrating immune cells, defined as the 
low-immunity subtype. The GYMS demonstrates its 
prediction power for immunotherapy responsiveness 
in both BrMs and primary LUAD. We further vali-
dated the reproducibility and stability of the GYMS 
in independent external cohorts. Moreover, based on 
the DEGs between the two GYMS subtypes, we estab-
lished a GYMS-related risk signature that served as an 
independent prognosis factor for LUAD patients with 
BrMs. To our knowledge, this study represents the 
current largest cohort based on bulk RNA-seq data 
to introduce an immune scoring system for predict-
ing prognosis and characterizing immune landscape in 
BrMs patients with LUAD.

The GYMS was developed and validated to assess the 
immune status and predict the potential responsiveness 
to immunotherapy in LUAD BrMs. We identified ten 
hub genes in the green-yellow module, which consists 
of CD8A, TMEM176B, TNFRSF13B, LAG3, SH2D2A, 
KLHL6, PARP15, CXCL10, IGLL5, and SLAMF6. LAG3 
(lymphocyte-activation gene 3) is a known immune 
checkpoint gene, and its expression product serving as 
an inhibitory receptor on activated T cells [40]. Ligand 
binding to LAG3 expressed on T-cell surface leads to the 
inhibition of T-cell proliferation and loss of T-cell effec-
tor function. Thus, high expression of LAG3 ligands con-
tributes to tumor immune escape [41]. Blockade of LAG3 
enhances the function of CD8+ T cell, which becomes a 
target for immunotherapy. CD8A serves as a biomarker 
of intratumoral prevalence of CD8+ T cells and has 
been identified as a predictive marker for response to 
immunotherapy [42]. CXCL10 is a crucial molecule in 

mediating CD8+ T cells chemotaxis and activation of T 
cells by binding to the CXCR3 receptor [43]. A previous 
study suggested that promoting CXCL10 secretion by 
cancer cells and recruiting CD8+ T cells could sensitize 
the tumor to ICIs [44]. Accordingly, CD8+ T cells may 
play a crucial role in determining the prognosis of LUAD 
patients with BrMs, as well as the response to immuno-
therapy. As expected, our study revealed higher levels of 
CD8+ T cell infiltration in high-GYMS tumors.

The two GYMS subtypes exhibited distinct immune 
profiles. The high-GYMS subtype showed increased 
accumulation of adaptive and innate immune cells, such 
as CD8+ T cells, cytotoxic T lymphocytes (CTLs), and 
NK cells, as well as enhanced expression of co-stimu-
latory molecules. These findings can be corroborated 
through the application of various R algorithms in train-
ing and validation cohorts. Thus, the high-GYMS tumors 
depict an inflamed TIME. In addition, the overexpressed 
immune checkpoints (eg. PD-L1) is another essential 
marker of an inflamed TIME, which could be induced 
by TILs [39]. Avoiding excessive immune response is 
the primary role of these immune checkpoint mol-
ecules by inhibiting pre-existing cancer immunity [45]. 
However, we observed that high-GYMS BrMs also dis-
played immune-suppressive features. High infiltration 
of immunosuppressive cells, such as Tregs, MDSC, and 
M2-type TAMs, along with pro-tumor cytokines, were 
also detected in high-GYMS tumors, potentially facili-
tating tumor immune escape. Meanwhile, high-GYMS 
tumors exhibited increased infiltrations of reactive astro-
cytes compared to low-GYMS tumors. Previous studies 
have reported that tumor-associated reactive astrocytes 
promote the formation of a tumor immunosuppressive 
environment in CNS cancer and accelerate the metastatic 
potential of cancer cells to the brain [46, 47]. Moreo-
ver, the significantly increased expression of immune 
checkpoints in high-GYMS tumors revealed function-
ally exhausted T cells enriched, causing immune evasion 
of malignant tumors after activation. Then, we further 
explored the specific immune characteristics of the low-
GYMS BrMs, which characterized by depleted cytotoxic 
immune cells, including CD8+ T cells and NK cells, and 
deficient phagocytosis resulting from decreased mac-
rophages and antigen presentation capacity. Thus, the 
low-GYMS group belongs to the "cold" tumor-immune 
phenotypes.

Given the limited efficacy of current therapies for 
LUAD BrMs, it is crucial to identify novel therapeu-
tic strategies and targets for improving treatment out-
comes. Clinical trials have revealed that immunotherapy 
based on immune checkpoint blockade may offer poten-
tial benefit for LUAD patients with BrMs [6, 48]. Nev-
ertheless, not all patients exhibit a positive response to 
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immunotherapy, and there exists a discordant immune 
profile between primary tumors and BrMs [9]; thus, 
exploring novel and effective biomarkers is required 
to recognize LUAD patients with BrMs who may ben-
efit from immunotherapy. In this study, the high-GYMS 
BrMs had higher expression of multiple immune check-
points than the low-GYMS, potentially attributed to the 
increased infiltration of TILs. Besides, low TIDE score 
and high T-cell inflamed score were indicated in the high-
GYMS BrMs. Therefore, high-GYMS BrMs may benefit 
from anti-PD-(L)1 therapy. Considering immunotherapy 
was required to play a role in both primary tumors and 
BrMs, the predicted value of the GYMS has also been 
verified in primary LUAD. As expected, a better immu-
notherapeutic response was observed in high-GYMS 
group of primary LUAD compared to low-GYMS group 
in an immunotherapy cohort. The pivotal role of TIME 
in immunotherapy underscores the potential to improve 
the efficacy of immunotherapy for LUAD BrMs through 
targeted interventions directed at specific cells and 
regulatory molecules within the TIME. Hence, revers-
ing the immunosuppressive effects potentially mediated 
by M2-type macrophages and reactive astrocytes could 
serve as an effective strategy [27]. For example, targeting 
STAT3 can turn the pro-tumor M2 into a tumor suppres-
sive M1 phenotype and inhibit astrocyte activation [47]. 
Collectively, for high-GYMS LUAD BrMs, co-inhibiting 
multiple immune checkpoints and combined regulator of 
M2-type TAM and astrocyte activation may yield a more 
potent therapeutic outcome compared to single-agent 
immunotherapy.

This study has several limitations. The study is ret-
rospective, which restricts the application range of our 
results. Further clinical trials are needed to determine the 
predictive value for survival and the response to immu-
notherapy. Moreover, in the future, we will continue 
to follow up and reassess the survival outcomes of the 
Xiangya BrMs cohort given the majority of patients in 
the cohort don’t reach the clinical endpoints.

Conclusions
In summary, we identified the most relevant gene mod-
ules for immunotherapy utilizing the WGCNA algorithm 
and subsequently established an immune scoring system 
for LUAD BrMs. The system could serve as a reliable bio-
marker for prognosis and predicting immune status in 
LUAD patients with BrMs.
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