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Abstract 

Valosin-containing protein (VCP) is a ubiquitously expressed type II AAA​+ ATPase protein, implicated in both amyo-
trophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This study aimed to explore the impact of the dis-
ease-causing VCPR191Q/wt mutation on mitochondrial function using a CRISPR/Cas9-engineered neuroblastoma cell 
line. Mitochondria in these cells are enlarged, with a depolarized mitochondrial membrane potential associated 
with increased respiration and electron transport chain activity. Our results indicate that mitochondrial hyperme-
tabolism could be caused, at least partially, by increased calcium-induced opening of the permeability transition 
pore (mPTP), leading to mild mitochondrial uncoupling. In conclusion, our findings reveal a central role of the ALS/
FTD gene VCP in maintaining mitochondrial homeostasis and suggest a model of pathogenesis based on progressive 
alterations in mPTP physiology and mitochondrial energetics.
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Introduction
Valosin-containing protein (VCP), also referred to as p97, 
Ter94 or Cdc48, is a highly conserved and ubiquitously 
expressed type II ATPase associated with diverse cel-
lular activities (AAA​+) protein [1]. Discovered by Peters 
et  al. [2], VCP utilizes the chemical energy provided by 
ATP hydrolysis to structurally remodel target molecules 
[3]. As predicted by its sheer abundance, constituting 
up to 1% of total cellular protein, VCP is involved in a 
plethora of processes in a cofactor-dependent manner [4, 
5]. These pathways include, but are not limited to, DNA 
repair, protein quality control, turnover and degradation, 
chromatin remodelling and organelle formation and deg-
radation [4, 6–8].

Over 50 pathogenic VCP mutations have been identi-
fied to cause progressive, autosomal dominant VCP mul-
tisystem proteinopathy 1 (MSP1) [9–12], a rare disorder 

†Silke Vanderhaeghe and Jovan Prerad: Co-first authors.

*Correspondence:
Marc Fivaz
marc.fivaz@remynd.com
Gerard Griffioen
gerard.griffioen@ext.remynd.com
Ludo Van Den Bosch
ludo.vandenbosch@kuleuven.be
1 Laboratory of Neurobiology, Department of Neurosciences, 
Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven – 
University of Leuven, Leuven, Belgium
2 Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease 
Research, Leuven, Belgium
3 reMYND, Leuven, Belgium
4 Department of Human Genetics, KU Leuven – University of Leuven, 
Leuven, Belgium
5 KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven – University 
of Leuven, Leuven, Belgium
6 Electron Microscopy Platform and VIB-Bioimaging Core, VIB-KU Leuven 
Center for Brain & Disease Research, Leuven, Belgium
7 Department of Neurology, University Hospitals Leuven, Leuven, Belgium

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-024-01866-0&domain=pdf


Page 2 of 16Vanderhaeghe et al. Acta Neuropathologica Communications          (2024) 12:161 

progressively affecting the muscles, brain, motor neurons 
and bone, accompanied by TDP-43 pathology [13, 14]. 
Close to 10% of individuals with VCP mutations develop 
amyotrophic lateral sclerosis (ALS), with these muta-
tions accounting for 1 to 2% of familial ALS [9, 11, 15, 16] 
and also being identified in sporadic ALS cases [16–18]. 
Furthermore, 30% of patients carrying VCP mutations 
develop frontotemporal dementia (FTD), proposed to 
account for 3.5% of all FTD cases [9–11, 15]. ALS and 
FTD are the two extremes of a neurodegenerative dis-
ease spectrum, linked through clinical, pathological (e.g. 
TDP-43 aggregates) and genetic overlap (e.g. mutations 
in C9orf72) [19, 20].

ALS is a fatal, adult-onset neurodegenerative disor-
der characterized by the selective degeneration of motor 
neurons in the motor cortex, brainstem and spinal cord. 
This motor neuron deterioration results in progressive 
muscle weakness and atrophy, evolves into paralysis and 
ultimately leads to death of the patient typically due to 
respiratory failure. On the other hand, FTD is charac-
terised by a progressive loss of neurons in the frontal 
and anterior temporal cortices, causing personality and 
behavioural changes and gradual impairment of language 
skills [19–21]. ALS and FTD patients have an average 
survival after disease onset of 2–5 years and 6–14 years, 
respectively [22]. In line with ALS and FTD being part of 
the same disease spectrum, VCP patients with concomi-
tant ALS and FTD have been reported [16, 19, 23–25].

Despite decades of ALS- and FTD-related drug 
research, both diseases remain largely untreatable and 
the current available therapies focus on symptom man-
agement and improving the quality of life. A notable 
exception is the recently discovered antisense oligonu-
cleotide tofersen, which slows down disease progression 
in ALS patients carrying mutations in SOD1 [26, 27]. The 
absence of effective cures is mostly due to the complex-
ity and the incomplete understanding of the molecular 
mechanism causing both neurodegenerative diseases. 
There is substantial evidence linking mitochondrial dys-
function to both ALS and FTD [28–32], including defects 
in mitochondrial transport [33–36], elevated levels of 
oxidative stress [37–41] and structural mitochondrial 
defects [42–44], among others. Many of these defects 
occur prior to disease onset, and a (causative) mitochon-
drial role is further supported by the importance of mito-
chondria in supporting the high metabolic demand of 
neurons [28, 45, 46]. Interestingly, pathogenic mutations 
in genes associated with mitochondrial function and 
homeostasis, such as CHCHD10, TBK1 and VCP, have 
been implicated in the development of  both ALS and 
FTD [47, 48].

To better understand how mitochondrial dysfunction 
contributes to ALS/FTD-associated neurodegeneration, 

we aimed to elucidate the molecular mechanisms by 
which the pathogenic VCPR191Q/wt mutation contributes 
to ALS/FTD-associated neurodegeneration. As most 
of the MSP1-associated mutations, the R191Q muta-
tion is present in the domain linking the N-domain and 
the ATPase domain D1 (N-D1 linker) of the gene and 
has been found in both ALS and FTD patients [23]. We 
used CRISPR/Cas9-mediated genome editing to create 
a non-overexpression and screenable VCPR191Q/wt model 
in the BE(2)-M17 neuroblastoma cell line. This model 
allowed us to investigate the impact of the mutation on 
mitochondrial health and function. We discovered that 
the VCPR191Q/wt mutation results in the opening of the 
mitochondrial permeability transition pore (mPTP), 
causing mitochondrial depolarization and hypermetabo-
lism, thereby decreasing mitochondrial health. Further-
more, our data suggest a role for mitochondrial calcium 
overload as the underlying cause of the mitochondrial 
permeability transition pore opening, thus providing a 
molecular mechanism by which VCP-related mitochon-
drial dysfunction may contribute to neurodegeneration 
in ALS and FTD.

Materials and methods
Cell culture
A heterozygous VCPR191Q/wt line and its isogenic control 
line (further referred to as wildtype, WT) were generated 
by Applied StemCell (Applied StemCell Inc., California, 
USA), starting from human BE(2)-M17 neuroblastoma 
cells (ATCC-CRL-2267, LGC Standards GmbH, Wesel, 
Germany). Confirmation of the VCPR191Q mutation was 
obtained following Sanger sequencing (Fig. S1A). Addi-
tionally, we confirmed that VCP protein levels were unaf-
fected by the CRISPR/Cas9 treatment and insertion of 
the mutation (Fig. S1B and C). The isogenic line stems 
from a CRISPR/Cas9 treatment condition where inser-
tion of the mutation was unsuccessful. Three isogenic 
WT lines were created and we confirmed that these 
clones showed similar results compared to the original 
BE(2)-M17 line during TMRM time trace  experiments 
(Fig. S2A). Four VCPR191Q/wt clones were generated for 
each line and were found to show similar results during 
TMRM time trace experiments (Fig. S2B). Subsequently, 
one clone was selected for each line for subsequent exper-
iments (indicated in bold, Fig. S2). Cells were grown and 
maintained at 37 °C and 5% CO2 in Opti-MEM medium 
(31985-070, GIBCO, Waltham, US) enriched with 10% 
fetal bovine serum (FBS, 26140-079, GIBCO), 1% mini-
mum essential medium with non-essential amino acids 
(MEM NEAA, 11140-035, GIBCO), 1% sodium pyruvate 
(11360-707, GIBCO) and 0.5% antibiotic/antimycotic 
solution (ABAM, 15240-062, GIBCO). Subculturing was 
performed using Dulbecco’s phosphate buffered saline 
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(DPBS, 14190-094, GIBCO) and 0.05% Trypsin–EDTA 
(25300-054, GIBCO). Mycoplasma contamination was 
routinely tested using the MycoAlert Mycoplasma Detec-
tion Kit (LT07-318, Lonza, Basel, Switzerland).

Transmission electron microscopy (TEM)
Cells were plated 48  h prior to treatment at a concen-
tration of 1,000,000 cells/10 cm2 dish. Cells were fixed 
by adding double strength fixative solution (5% glutar-
aldehyde; 16220, EMS, Hatfield, USA) in 0.2  M sodium 
cacodylate buffer (12300, EMS) to the growth medium 
while rotating. After 10  min the solution was replaced 
by single strength fixative (2.5% glutaraldehyde in 0.1 M 
sodium cacodylate buffer) and stored overnight at 4  °C. 
After washes with 0.1  M sodium cacodylate buffer, the 
cells were scraped and pelleted. Subsequently, the pel-
let was cut into small cubes, which were post-fixed in 
1% osmium tetroxide (19151, EMS) for 2 h, washed with 
dH2O and subjected to gradual dehydration through an 
ethanol series (50–100%). During the 70% ethanol step, 
the cubes were stained with uranyl acetate (22400, EMS) 
for 30 min at 4 °C. After dehydration, cells were infiltrated 
with resin (Agar 100; AGR1043, Agar Scientific, Stansted, 
UK)/ethanol mixtures. The following day, the cubes of 
cells were embedded in 100% epoxy resin at the bottom 
of pyramid shaped BEEM® capsules for two days at 60 °C. 
Next, 70  nm sections were cut on a Leica Ultracut S 
ultramicrotome (Leica Microsystems, Wetzlar, Germany) 
and collected on 200 mesh grids. Afterwards, they were 
post-stained with 3% uranyl acetate in water (10  min), 
Reynold’s lead citrate (2  min). Micrographs were taken 
in a TEM JEOL JEM1400-LaB6 (Jeol, Tokyo, Japan) oper-
ated at 80  kV. Diameter and perimeter of mitochondria 
were quantified using ImageJ (WT n = 371, VCPR191Q/wt 
n = 377; across three independent experiments).

Immunocytochemistry
Cells were plated 24  h prior to fixation to reach 75% 
confluence. Cells were fixed using 4% paraformaldehyde 
(PFA, 28908, Thermo Fisher Scientific, Waltham, US) in 
DPBS (14190-250, Thermo Fisher Scientific) for 20 min. 
Three DPBS wash steps were followed by 20 min permea-
bilization in 0.1% Triton X-100 (T8787, Sigma-Aldrich, 
St. Louis, US) in DPBS. Subsequently, blocking was per-
formed using 5% normal donkey serum (NDS, D9663, 
Sigma-Aldrich) in 0.1% triton X-100/DPBS for 30 min at 
room temperature. Primary antibodies (see Table 1) were 
incubated overnight in 2% NDS in Triton X-100/DPBS 
at 4  °C. The following day, after three DPBS wash steps, 
1 µg/ml Hoechst 33342 (62249, Thermo Fisher Scientific) 
and the appropriate secondary antibodies (see Table  1) 
were incubated in 2% NDS in Triton X-100/DPBS for 
1 h at RT. Finally, cells were washed three times in DPBS 

and preserved in 0.1% Triton X-100/DPBS. Single plane 
confocal images were obtained using the Operetta CLS 
equipped with a 40X or 63X water emersion objective 
lens (Perkin Elmer, Waltham, US). Mitochondrial mass 
was quantified as TOMM20 intensity per cell (masked by 
α-tubulin staining), averaged per well and normalised to 
WT TOMM20 intensity and was analysed with the Har-
mony high-content analysis software (Perkin Elmer).

Western Blot
Ice cold RIPA buffer (Sigma-Aldrich) supplemented with 
a protease inhibitor cocktail (cOmplete™ EDTA-free, 
Sigma-Aldrich) and phosphatase inhibitors (PhosSTOP, 
Sigma-Aldrich) was used to lyse human neuroblastoma 
cells. The protein concentration was determined using 
the Micro BCA Protein Assay Kit (23235, Thermo Fisher 
Scientific) according to the protocol. Equal amounts 
of protein (20 µg) were supplemented with Pierce reduc-
ing sample buffer (39000, Thermo Fisher Scientific) and 
boiled for 10 min at 95 °C before being loaded on 4–20% 
Mini-PROTEAN TGX Stain-Free Precast Gels (Bio-Rad 
Laboratories, Hercules, US) and transferred to Trans-
Blot Turbo Mini 0.2 µm nitrocellulose membranes (Bio-
Rad Laboratories) using the Trans-Blot® Turbo™ Transfer 
System (Bio-Rad Laboratories). The membranes were 
subsequently blocked in 5% non-fat dry milk (Blotting-
Grade Blocker, Bio-Rad Laboratories) in Tris Buffered 
Saline solution with 0.1% tween (TBS-T, Sigma-Aldrich) 
for 1  h at room temperature before overnight incuba-
tion with primary antibodies (see Table 1). Three TBS-T 
washes and a 1  h incubation with secondary antibodies 
(polyclonal goat anti-rabbit/mouse-immunoglobulins/
HRP, DAKP, 1/5000 in T-BST) at room temperature were 
performed before washing two times with TBS-T and 
once with TBS. Finally, protein detection was performed 
using enhanced chemiluminescence reagents (ECL sub-
strate, Thermo Fisher Scientific) and the ImageQuant 
LAS 4000 biomolecular Imager (GE Healthcare). The 
ImageQuant TL software (version 7.0; GE Healthcare 
Life Sciences) was used to quantify band intensities. Pro-
tein levels were normalised to those of loading controls.

Mitochondrial membrane potential assay
Cells were plated 24 h prior to the experiment to reach 
75% confluence. The mitochondrial membrane poten-
tial was measured using tetramethylrhodamine methyl 
ester perchlorate (TMRM, T668, Invitrogen, Eugene, 
US), diluted to 30 nM in 0.5% dimethyl sulfoxide (DMSO, 
D2650, Sigma-Aldrich) and loaded for 1.5  h in phe-
nol red free Opti-MEM medium (11058-021, GIBCO; 
enriched with 10% FBS, 1% MEM NEAA, 1% sodium 
pyruvate and 0.5% ABAM), co-loaded with 50 nM Hoe-
chst 33342 at 37 °C and 5% CO2. Under these conditions, 
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TMRM operated in non-quenching mode [49]. Co-
loading with 2.5 µM oligomycin A (4110, Tocris, Bristol, 
UK) or 2.5  µM Carbonyl cyanide 4-(trifluoromethoxy)

phenylhydrazone (FCCP, C2920, Sigma-Aldrich) served 
as positive or negative control, respectively. TMRM 
fluorescence was recorded at 37  °C and 5% CO2 using 

Table 1  Overview of antibodies, plasmids, and products used

Reagent or resource Source Identifier

Antibodies
α-tubulin
(ICC 1:50/WB 1:500)

Cell Signaling Technology, Danvers, US 2125S

GAPDH
(1:5000)

Thermo Fisher Scientific, Waltham, US AM4300

Tom20
(ICC 1:50/WB 1:500)

Santa Cruz Biotechnology, Dallas, US Sc-17764

VCP
(1:1000)

Thermo Fisher Scientific, Waltham, US MA3-004

Alexa Fluor 488 donkey anti-rabbit
(1:1000)

Invitrogen, Waltham, US A21206

Alexa Fluor 555 donkey anti-mouse
(1:1000)

Invitrogen, Waltham, US A31570

Mitochondrial respiratory activity chemicals
Hepes Sigma-Aldrich, St. Louis, US H3375

CAS: 7365-45-9

Sucrose Thermo Fisher Scientific, Waltham, US S-8600-60
CAS: 57-50-1

KH2PO4 Sigma-Aldrich, St. Louis, US P0662
CAS: 7778-77-0

KCl Merck, Darmstadt, Germany 104936
CAS: 7447-40-7

EGTA​ Sigma-Aldrich, St. Louis, US E4378
CAS: 67-42-5

MgCl2 Sigma-Aldrich, St. Louis, US M2670
CAS: 7791-18-6

BSA (fatty acid free) Sigma-Aldrich, St. Louis, US A6003
CAS: 9048-46-8

NaOH Merck, Darmstadt, Germany 109913
CAS: 1310-73-2

Compounds
α-Tocopherol
(75 µM; 1 h)

Sigma-Aldrich, St. Louis, US T3251
CAS: 10191-41-0

Bongkrekic acid
(10 µM; 1 h)

Sigma-Aldrich, St. Louis, US B6179
CAS 11076-19-0

Carbachol
(15 µM, 10.5 min)

Sigma-Aldrich, St. Louis, US C4382
CAS: 51-83-2

Cyclosporin A
(1 µM and 10 µM; 1 h)

Sigma-Aldrich, St. Louis, US 30024
CAS: 59865-13-3

FK506
(10 nM and 25 µM; 1 h)

Abcam, Cambridge, UK Ab120223
CAS: 104987-11-3

MCUi4
(TMRM and mPTP assay:1 and 3 µM; 1 h/ calcium measurements 
2.5 or 5 µM; 1.5 h)

Tocris, Bristol, UK 7195
CAS: 371924-24-2

N-acetyl-L-cysteine (NAC)
(1 mM; 2 h)

Sigma-Aldrich, St. Louis, US A9165
CAS: 616-91-1

NIM811
(3 µM; 1 h)

MedChemExpress, New Jersey, USA HY-P0025
CAS: 143205-42-9

Thapsigargin
(2.5 µM, 10.5 min)

Enzo Biochem, NY, USA BML-PE180
CAS: 67526-95-8
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the Operetta CLS equipped with a 40X water emersion 
objective lens and analysed (as TMRM intensity per 
cell, averaged per well and normalised to WT baseline 
TMRM intensity) with the Harmony high-content analy-
sis software.

Mitochondrial oxygen consumption rate
In order to measure the mitochondrial oxygen consump-
tion rate (OCR), 3,000,000 cells/ml were prepared in res-
piration buffer (20 mM Hepes, 110 mM sucrose, 10 mM 
KH2PO4, 120 mM KCl, 0.5 mM EGTA, 2 mM MgCl2 and 
0.3% BSA in dH2O, buffered to pH 7.2 with NaOH, see 
Table  1). The oxygen consumption was measured using 
the Clark electrode (Oxygraph + System, Hansatech 
instruments Ltd, Pentney, UK). Upon loading of the cells 
in the chamber, 5 mM succinate (S3674, Sigma-Aldrich) 
and 8 µM digitonin (D141, Sigma-Aldrich) were admin-
istered. After closure of the chamber and reaching stable 
measurements, baseline data were collected. Addition-
ally, data were continuously collected during subsequent 
ADP (A2754, Sigma-Aldrich), oligomycin A (4110, Toc-
ris) and FCCP (0453, Tocris) treatment (Fig. S3). Data 
were analysed using the OxyTrace + software (Hansat-
ech instruments) and normalized to initial O2 levels. The 
slopes were calculated to derive the OCR. Slopes from 
baseline, ADP-stimulated, oligomycin A-treatment and 
FCCP-treatment measurements represent state 2, state 3, 
proton leak and uncoupled respiration, respectively.

Metabolic rate assay
A 2X mitochondrial assay mix (MAM) was made by 
combining the 2X mitochondrial assay solution (MAS, 
72303, Biolog, Hawyard, US), 2 × Redox Dye MC (74353, 
Biolog) and 60 µg/ml Saponin (SAE0073, Sigma-Aldrich). 
30 µl of the 2X MAM was added to the respective wells 
of the  MitoPlate™ S-1 (14105, Biolog). Afterwards, the 
plate was incubated for 1 h at 37 °C to dissolve the sub-
strates coated on the MitoPlate. Cells were collected in 
1X MAS and plated on the MitoPlate at a concentration 
of 60,000 cells/well. Absorbance was measured for 24 h at 
10-min intervals using the OmniLog® PM System (96164, 
Biolog), using its kinetic reading program (OD590nm). 
Data were obtained from the Biolog Data Analysis soft-
ware (Biolog) and further analysed using Excel to calcu-
late the slope of the increase in absorbance over the first 
two hours to represent ETC activity.

Calcein‑AM‑cobalt fluorescence quenching assay
Opening of the mitochondrial permeability transition 
pore was assessed by the quenching of calcein-AM 
fluorescence following cobalt treatment [50] using a 

protocol adapted from Gautier et  al. [51]. Cells were 
plated 48 h prior to readout to reach 75% confluence at 
the time of the experiment. Cells were loaded in phenol 
red free Opti-MEM medium (enriched with 10% FBS, 
1% MEM NEAA, 1% sodium pyruvate and 0.5% ABAM) 
with 0.5  µM Calcein AM (C3100MP, Thermo Fisher 
Scientific), 1 µM MitoTracker Deep Red FM (M22426, 
Thermo Fisher Scientific) and 0.1  µM Hoechst 33342 
in 0.5% DMSO for 30  min at 37  °C and 5% CO2. Sub-
sequently, cells were additionally incubated with 2 mM 
CoCl2 (1.02539, Merck, Darmstadt, Germany) in 0.5% 
DMSO for 30  min. Calcein fluorescence was recorded 
at 37 °C and 5% CO2 using the Operetta CLS equipped 
with a 40X water emersion objective lens and analysed 
as calcein intensity per cell, averaged per well and nor-
malised to WT baseline calcein intensity with the Har-
mony high-content analysis software.

Calcineurin activity assay
Calcineurin activity was measured using the cellular 
calcineurin phosphate activity assay (ab139464, Abcam, 
Cambridge, UK). Cells were plated 48 h prior to sample 
preparation in 10 cm2 dishes to reach 90% confluence. 
Cells were collected in 15 ml Tris-Buffered Saline (TBS) 
and exposed to lysis buffer. Upon sedimentation at 150k 
x g, total protein concentration was determined using 
the micro BCA protein assay kit (23235, Thermo Fisher 
Scientific) and samples were further diluted in lysis 
buffer to 2.5 µg/µl total protein. Further procedures fol-
lowed the assay protocol and OD600nm was measured 
using the GloMax Discover (GM3000, Promega, Cali-
fornia, US). Calcineurin activity was quantified using 
Eq.  1 from the assay protocol (PP2B = total – EGTA 
buffer).

DNA construct
The lentiviral vector pLV[Exp]-SYN1 > {YC4mito_4xMito_
Clover3_Ruby3} (mito_FRET, VectorBuilder ID: 
VB230303-1194bmm), was designed by adding an 
N-terminal Cytochrome C Oxidase Subunit 8 (COX8) 
tag to a modified yellow cameleon sensor [52] under 
a neuronal synapsin promoter. This version replaces 
cyan and yellow fluorescent proteins with mClover3 
and mRuby3 for increased brightness and reduced 
photodamage. Mito_FRET is responsive to a broad 
range of calcium concentrations (KDs of 80  nM and 
100  µM), with highest sensitivity at lower calcium con-
centrations. To probe higher mitochondrial calcium 
concentrations, we created the pRP[Exp]-CBh > {Mito-
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4x}:{mito-linker}:{mRuby3(ns)}:{Linker}:{GCaMP6f } 
(Mito_GCaMP6f, VectorBuilder ID: VB231031-1416faz) 
vector using a CMV promotor with the COX8 tag bound 
to a GCaMP6f-mRuby3 fusion protein with a KD of 
375 nM.

Mitochondrial calcium imaging
Cells were plated 24 h prior to the experiment at 10,000 
cells per well in black, flat-bottom PhenoPlate 96-well 
plates (6055302 Revvity). Lentiviral vectors were thawed 
on ice, diluted in culture medium, and used to trans-
duce cells at a multiplicity of infection (MOI) of 20. 
For the Mito_GCaMP6f sensor, the cells were plated 
at 20,000 cells per well and transfected 24  h later using 
the lipofectamine® 2000 protocol (11668019, Thermo 
Fisher) with 80  ng DNA and 0.19  µl Lipofectamine per 
well. After four days, cells were treated for 1.5  h with 
2.5 or 5 µM MCUi4 (a mitochondrial calcium uniporter 
blocker) or control DMSO. Imaging was performed on 
the Operetta CLS with a 40 × water immersion lens, cap-
turing four fields per well in three Z-stacks (-3.0  µm to 
1.0  µm). For mito_FRET sensor, excitation was at 460–
490  nm, and emissions were measured at 500–550  nm 
(mClover3) and 570–660 nm (FRET mRuby3), using 50% 
power and 300  ms exposure. For Mito_GCaMP6f, exci-
tation was at 460–490 nm (GCaMP6f) and 530–560 nm 
(mRuby3), with the respective emissions at 500–550 nm 
and 570–650 nm. Five replicate wells were used for each 
experiment at 37  °C and 5% CO2 unless otherwise indi-
cated in the figure legend. Five baseline measurements 
were taken at 1.5-min intervals, followed by treatment 
with 2.5  µM thapsigargin (TG) (BML-PE180, Enzo Bio-
chem, NY, USA) or 15  µM carbachol (CB) (C4382, 
Sigma Aldrich) to assess mitochondrial calcium uptake, 
after which seven additional 1.5-min intervals were per-
formed. Image analysis was conducted using Harmony 
5.2 software, with Z-stack projections processed via 
Gaussian filtering and ROI definition using the Common 
Threshold. The standard cell tracking algorithm deter-
mined ROI locations and intensities were calculated for 
each channel, FRET ratios (mRuby3/mClover3) and the 
Mito_GCaMP6f (GCaMP6f/mRuby3) ratios were cal-
culated and the data were exported for further process-
ing in Python 3.8.8. basal mitochondrial calcium levels 
were analyzed using the second basal timepoint and both 
ratios were normalized to the mean ratio of baseline time 
points to obtain ΔF/F data.

Compound treatment
Compounds were administered in 0.5% DMSO in either 
Opti-MEM medium with or without phenol red enriched 
with 10% FBS, 1% MEM NEAA, 1% sodium pyruvate and 
0.5% ABAM. For used compounds see Table 1.

Statistical analysis
Data are represented as mean ± SEM, with each dot rep-
resenting individual measurements across at least three 
individual experiments, unless indicated otherwise. 
Graphs and statistical analyses were made in Graph-
Pad Prims 10.2.2. Data were tested for normal Gauss-
ian distribution using the D’Agostino-Pearson omnibus 
normality test, Anderson–Darling test and/or Shapiro–
Wilk normality test. Statistical tests are indicated in the 
respective figure legends.

Results
VCPR191Q/wt mutation is associated with enlarged 
mitochondria
To investigate the effect of the R191Q mutation in VCP 
on mitochondrial health, we used the CRISPR/Cas9 tech-
nology to introduce the mutation in one allele of the VCP 
gene in the human BE(2)-M17 neuroblastoma cell line 
(Fig. S1). We first assessed mitochondrial morphology, an 
important indicator of cellular homeostasis [53] affected 
in multiple ALS/FTD models [28], using transmission 
electron microscopy (TEM) both in control (WT) human 
cells and those carrying the heterozygous VCPR191Q/wt 
mutation (Fig. 1A and Fig. S4). A significant enlargement 
of both the mitochondrial diameter (Fig. 1B, increase of 
26.8%) and perimeter (Fig.  1C, increase of 25.1%) was 
observed in VCPR191Q/wt mutant cells compared to WT. 
Mitochondrial elongation or shape, defined as the ratio 
of perimeter over diameter, on the other hand, remained 
unchanged (Fig. 1D). Additionally, our findings revealed 
no increase in total mitochondrial mass in the VCPR191Q/

wt cell line compared to WT, measured as TOMM20 
expression per cell using immunocytochemistry (Fig. 1E, 
F) and measured as TOMM20 protein levels using West-
ern blot (Fig. 1G, H).

Taken together, these results point towards an enlarge-
ment of the mitochondria in cells carrying the VCPR191Q/

wt mutation.

Mitochondrial membrane potential is depolarized 
in VCPR191Q/wt mitochondria
The mitochondrial membrane potential ( ��m ), the volt-
age difference across the inner mitochondrial membrane 
(IMM) generated by the electron transport chain (ETC), 
is an important attribute of mitochondrial function [54]. 
In this study, we used TMRM, a cationic fluorescent dye 
that sequesters into active mitochondria based on the 
��m , to measure the mitochondrial membrane potential 
(Fig.  2A). Importantly, since no difference in mitochon-
drial mass was observed between WT and VCPR191Q/wt 
cells (Fig. 1E–H), TMRM fluorescent intensity specifically 
reflects the mitochondrial membrane potential rather 
than a change in total mitochondrial mass. Mitochondria 
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Fig. 1  VCPR191Q/wt cells have enlarged mitochondria, but maintain mitochondrial shape and total mitochondrial mass. A Representative 
transmission electron microscopy (TEM) images of mitochondria (indicated by black arrowheads) from WT and mutant VCPR191Q/wt cell lines. Scale 
bar: 500 nm; (n) nucleus. B Diameter, C perimeter and D perimeter/diameter ratio quantifications from the TEM images shown in A; each dot 
represents a mitochondrion that was measured (WT n = 371, VCPR191Q/wt n = 377, across three independent experiments). E Fluorescent microscopy 
images of mitochondrial (TOMM20, orange) and cytoplasmic (α-tubulin, green) markers in WT and VCPR191Q/wt cell lines. Single plane, scale bar: 
50 µm. F TOMM20 intensity quantifications, representing total mitochondrial mass, from the ICC images shown in E. Dots represent one well 
in which fluorescent intensity was measured across four independent experiments; (AU) arbitrary unit. G Representative Western blot detecting 
TOMM20 in WT and mutant VCPR191Q/wt cell lysates. GAPDH serves as loading control. H Quantification of Western blot shown in G, measuring 
TOMM20 levels normalised to GAPDH. Dots represent technical replicates across three independent experiments. B–D, F Means ± SEM are shown. 
Statistical significance was evaluated by unpaired Student t-test (B) or Mann–Whitney test (C, D, F, H); ns p > 0.05, ****p < 0.0001
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from cells carrying the VCPR191Q/wt mutation had a sig-
nificantly reduced TMRM fluorescence indicating the 
depolarization of the mitochondria (Fig.  2B, C and Fig. 
S5). Specificity of the TMRM signal to reflect ��m was 
confirmed by the hyperpolarization response induced by 
the F1Fo-ATPase inhibitor oligomycin A and the dissipa-
tion of ��m following treatment with the mitochondrial 
uncoupler FCCP (Fig. 2C and Fig. S2).

These findings confirm that mitochondrial health is 
compromised as observed by the strong depolarization 
across the IMM of the VCPR191Q/wt cells.

Mitochondrial oxygen consumption rate and ETC activity 
are increased in VCPR191Q/wtcells
The mitochondrial membrane potential is the result of 
the proton motive force maintained by the activity of 
the electron transport chain during cellular respiration. 
Therefore, one possible cause of the observed mito-
chondrial depolarization is a reduced activity of the 
electron transport chain complexes. To investigate this 
hypothesis, we measured ETC activity using two distinct 
methods.

First, we compared the oxygen consumption rate 
(OCR) between semi-permeabilized WT and VCPR191Q/

wt cells using the Clark electrode, as a decrease in ETC 
activity should result in a corresponding decrease in 
oxygen consumption in mitochondria [55]. After selec-
tive permeabilization of the plasma membrane using 
digitonin, cells were exposed to the complex II substrate 
succinic acid and OCR was measured in the absence or 
presence of ADP. Contrary to expectation, both ADP-
independent (state 2), as well as ADP-dependent (state 
3) respiration were significantly increased in VCPR191Q/

wt mitochondria (Fig. 3A). Respiration remained elevated 
in VCPR191Q/wt cells after FCCP-induced collapse of the 
proton gradient and concomitant mitochondrial uncou-
pling (Fig.  3A). Moreover, higher OCR in VCPR191Q/

wt cells persisted after inhibition of the FoF1-ATPase by 
oligomycin A (Fig.  3A), consistent with an increased 
proton leak across the IMM [56],  ��m depolarization 
(Fig. 2B, C), and a compensatory ETC response to coun-
teract a decline in proton motive force. Elevated proton 
permeability across the IMM is typically associated with 
reduced mitochondrial coupling efficiency. The respira-
tory coupling ratio (RCR), defined here as state 3/state 2 

Fig. 2  Mitochondrial membrane potential is depolarized in VCPR191Q/wt mitochondria. A The mitochondrial membrane potential ( ��m ) 
was measured by live cell imaging using TMRM, a cationic fluorescent dye, in non-quenching mode. TMRM accumulates in the mitochondrial 
matrix based on the mitochondrial membrane potential. In unhealthy (depolarized) mitochondria, the matrix carries comparatively fewer negative 
charges and consequently, less TMRM accumulates. Oligomycin A, an ATPase inhibitor causing hyperpolarization, and FCCP, a mitochondrial 
uncoupler causing mitochondrial depolarization, are used as positive and negative controls respectively. Abbreviations: outer mitochondrial 
membrane (OMM) and inner mitochondrial membrane (IMM). B Representative fluorescent microscopy images of mitochondria labelled 
with TMRM at baseline conditions. Scale bar: 20 µm. C TMRM mean intensity quantifications for baseline, oligomycin A (positive control) and FCCP 
(negative control) conditions from the TMRM images shown in B. Means ± SEM are shown; dots represent individual wells measured across four 
independent experiments. Statistical significance was evaluated by Two-way ANOVA with Bonferroni correction for multiple comparisons; ns 
p > 0.05, ****p < 0.0001
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respiration, was not significantly different in VCPR191Q/

wt cells, but showed a small trend towards a mild uncou-
pling of mitochondria (Fig. 3B). Together, these findings 
indicate that mitochondria in VCPR191Q/wt cells have a 
hyperactive ETC which may result from a proton leak in 
the mitochondrial matrix.

Second, to confirm the potential increase in elec-
tron transport chain activity, we assessed mitochondrial 
ETC activity using the tetrazolium redox (MC) dye [57]. 
Cytochrome C is the terminal electron acceptor in the 
ETC and its reduction is measured by a colour shift of the 
MC dye. Following exposure of semi-permeabilized cells 
to an array of mitochondrial substrates (succinic acid, 
α-ketoglutaric acid, fumaric acid and L-malic acid), we 
observed an increase in ETC electron flow in VCPR191Q/

wt compared to WT cells (Figs.  3C and S6), confirming 
ETC hyperactivity in response to a broad range of TCA 
substrates.

In conclusion, these findings provide compelling evi-
dence supporting increased ETC activity in mutant VCP 
cells and suggest that both dissipation of ��m  and mito-
chondrial hypermetabolism result, at least partly, from a 
proton leak across the mitochondrial inner membrane.

Calcium‑induced mPTP opening underlies mitochondrial 
depolarization
The mitochondrial permeability transition pore 
(mPTP) [51] is a non-selective channel that allows 
passage of molecules up to 1.5  kDa in size across the 
IMM [58–60]. Opening of the mPTP can trigger apop-
tosis and has been implicated in ALS as a mechanism 
of motoneuron death [61, 62]. We therefore evaluated 
the opening of the mPTP as a potential mechanism 
underlying the proton leak and dissipation of ��m in 
VCPR191Q/wt cells. We measured opening of the mPTP 
by live-cell imaging using the calcein-AM-CoCl2 fluo-
rescence quenching assay. Cells were first loaded with 
calcein-AM and subsequently treated with CoCl2 which 
quenches calcein fluorescence everywhere except in 
the mitochondrial matrix as the IMM is imperme-
able to cobalt [51, 63] (Fig.  4A, B). After confirming 
equal calcein loading in both cell lines (Fig.  4C), we 
observed a decreased intensity of calcein fluorescence 
in mitochondria from mutant VCPR191Q/wt cells com-
pared to their WT counterparts, suggesting increased 
opening of the mPTP in VCPR191Q/wt cells (Fig. 4B, D). 
Furthermore, rescue of calcein fluorescent intensity in 

Fig. 3  VCPR191Q/wt causes increased mitochondrial oxygen consumption rate and electron transport chain activity. A Oxygen consumption 
rate (OCR) in WT and VCPR191Q/wt cell lines: state 2 respiration following digitonin permeabilization, state 3 respiration following ADP addition, 
uncoupled respiration following mitochondrial uncoupling by FCCP and proton leak following oligomycin A treatment; dots represent individual 
measurements across at least three independent experiments. B Respiratory control ratio, calculated as state 3/state 2 respiration; dots represent 
individual measurements across at least three independent experiments. C Electron transport chain activity in WT and VCPR191Q/wt cell lines exposed 
to varying substrates: succinic acid, α-ketoglutaric acid, fumaric acid or L-malic acid; dots represent individual measurements across seven (VCPR191Q/

wt) or eight (WT) independent experiments. A–C Means ± SEM are shown. Statistical significance was evaluated by Two-way ANOVA with Bonferroni 
correction for multiple comparisons (A, C) or unpaired Student t-test (B); ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 4  Mitochondrial PTP opening underlies mitochondrial depolarization. A Illustration of calcein-AMccobalt quenching assay, used to measure 
mitochondrial permeability transition pore (mPTP) opening during live cell imaging. Cells are loaded with calcein-AM and subsequently treated 
with CoCl2 which quenches calcein fluorescence everywhere except in mitochondria as the IMM is impermeable to cobalt. Decreased calcein 
intensity in mitochondria indicates opening of the mPTP. B Representative fluorescent microscopy images of WT and VCPR191Q/wt cells stained 
with calcein (green) and mitoTracker (red). Scale bar: 10 µm. C Calcein mean intensity for WT and VCPR191Q/wt cells not exposed to cobalt treatment 
to confirm equal calcein loading. Means ± SEM are shown; dots represent calcein mean intensity from 6 independent experiments. D Calcein 
mean intensity for WT and VCPR191Q/wt cells both untreated and following exposure to mPTP inhibitor cyclosporin A (CsA) and oxidative stress 
induced mPTP opening-inhibitors α-tocopherol and N-acetyl cysteine (NAC). E TMRM mean intensity for WT and VCPR191Q/wt cells both untreated 
and following exposure to mPTP inhibitors cyclosporin A (CsA) and NIM811 and oxidative stress induced mPTP opening-inhibitors α-tocopherol 
and N-acetyl cysteine (NAC). F TMRM mean intensity for WT and VCPR191Q/wt cells both untreated and following exposure to mPTP inhibitor 
cyclosporin A (CsA). D–F Means ± SEM are shown; dots represent individual measurements across at least three independent experiments. C–F 
Statistical significance was evaluated by Mann–Whitney test (C) or Two-way ANOVA with Bonferroni correction for multiple comparisons (D–F); ns 
p > 0.05, *p < 0.05, **p < 0.01, ****p < 0.0001
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VCPR191Q/wt mitochondria following treatment with 
the mPTP inhibitor cyclosporin A (CsA), confirmed a 
role of the mPTP opening in mitochondrial release of 
the dye (Fig.  4D). Notably, the TMRM mean intensity 
in VCPR191Q/wt cells was significantly increased follow-
ing treatment with 1  µM CsA and fully rescued after 
treatment with 10 µM CsA, further implicating mPTP 
opening in mitochondrial depolarization (Fig.  4E, F). 
CsA, besides inhibiting the mPTP, also inhibits cal-
cineurin. To disambiguate these two CsA targets, we 
treated cells with FK506, a calcineurin inhibitor with 
no known effect on the mPTP [64], as well as NIM811, 
a cyclophilin D (CypD)-specific non-immunosuppres-
sive derivative of CsA [65, 66]. Neither mPTP open-
ing nor mitochondrial depolarization were affected by 
treatment with FK506 (Fig. S7A-C) at a concentration 
reported to quantitatively inhibit calcineurin activ-
ity (10 nM) [67]. Additionally, calcineurin activity was 
shown not to be affected in the VCPR191Q/wt cell line 
(Fig. S7D). In contrast, NIM811 fully restored TMRM 
mean intensity in VCPR191Q/wt cells (Fig. 4E), similar as 
observed following CsA treatment. To further hone in 
on a CypD-dependent mechanism of mPTP opening, 
we made use of bongkrekic acid (BKA), a drug that tar-
gets a mechanism of mPTP opening that is independ-
ent of CypD [68]. BKA treatment did not restore the 
mitochondrial membrane potential in VCPR191Q/wt cells, 
in line with CypD-mediated activation of mPTP in the 
disease state (Fig. S8). Together, these data indicate that 
depolarization of ��m and possibly the other mito-
chondrial phenotypes observed in VCPR191Q/wt cells 
originate from a CypD-dependent increase in mPTP 
opening.

The main initiators of mitochondrial permeability 
transition are reactive oxygen species and mitochondrial 
matrix calcium overload [58–60]. To identify the trig-
ger of mPTP opening, we first exposed cells to N-acetyl-
cysteine (NAC), a glutathione-precursor that prevents 
oxidative stress-induced mPTP opening [51, 69] or 
α-tocopherol, which inhibits mPTP opening by lipid per-
oxidation [51, 70]. Neither of these antioxidants reduced 
mPTP opening or rescued ��m in VCPR191Q/wt cells, 
arguing against a role of reactive oxygen species in these 
processes (Fig. 4D, E).

We next investigated whether calcium overload in 
the mitochondrial matrix underlies mPTP opening and 
��m depolarization in VCPR191Q/wt mitochondria. Cal-
cium influx in the matrix is primarily mediated by the 
mitochondrial calcium uniporter (MCU) complex [71]. 
Treatment with the MCU inhibitor MCUi4 (Fig. S9) 
attenuated mPTP opening (1 µM; Fig. 5A) and increased 
��m (3  µM; Fig.  5B) pointing to elevated mitochon-
drial calcium as a proximal cause of mPTP opening. 

��m rescue by MCUi4 is only partial, suggesting that 
other mechanisms contribute to  ��m  depolarization 
in VCPR191Q/wt cells. Consistent with a role of calcium in 
mPTP opening, increased basal mitochondrial Ca2+ lev-
els ([Ca2+]m were observed in the VCPR191Q/wt mitochon-
dria using a mitochondria-targeted calcium FRET sensor 
(mito_FRET; Fig.  5C). In addition to steady-state eleva-
tion of [Ca2+]m, mitochondrial calcium uptake was also 
exacerbated in these mutant cells, following thapsigargin-
induced ER calcium release (Fig. 5D).

In conclusion, our findings suggest that the clinical 
R191Q VCP mutation results in mitochondrial calcium 
dyshomeostasis, which sets off a series of mitochondrial 
perturbations involving increased opening of the mPTP, 
��m depolarization and ETC hyperactivity. These results 
provide compelling evidence for mitochondrial hyperme-
tabolism in a VCP knock-in cell model, a mitochondrial 
phenotype reminiscent of the hypermetabolism observed 
in individuals with ALS, both in the brain [72] and at the 
organismal level [73, 74].

Discussion
Mitochondria are crucial organelles for cell homeosta-
sis and for supporting the high metabolic requirements 
of neurons [75]. Throughout decades of research, mito-
chondrial dysfunction has been hypothesised to con-
tribute to the neuronal degeneration associated with the 
ALS/FTD disease spectrum, as well as to other neurode-
generative disorders [76]. Interestingly, the type II AAA​
+ VCP protein plays an important role in mitochondrial 
homeostasis and is involved in the regulation of mito-
chondrial fusion, mitochondrial calcium uptake and 
mitochondrial quality control, both through its involve-
ment in mitophagy as well as in mitochondria-associated 
degradation [4]. Accordingly, knock-in mice with the 
VCP mutation (R155H/+), found in both ALS and FTD 
patients [23], show extensive accumulation of abnormal 
mitochondria [77, 78].

In this study, we used a non-overexpression VCPR191Q/

wt model, generated in the neuroblastoma BE(2)-M17 
cell line, to gain a deeper understanding of the molecu-
lar mechanism by which VCP mutations contribute to 
ALS/FTD-associated neurodegeneration, focusing on 
mitochondrial dysfunction. We found that mitochondria 
in our mutant VCPR191Q/wt cell model are enlarged and 
that the total mitochondrial mass is unaffected. These 
data imply fewer mitochondria per cell in VCPR191Q/wt 
cells and a potential defect in the mitochondrial fusion 
or fission machinery. Futhermore, enlarged mitochon-
dria, with no apparent signs of matrix/cristae defects 
may reflect an increase in mitochondrial output [79], and 
would be consistent with the mitochondrial hypermetab-
olism we report here.
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Additionally, we found the mitochondrial membrane 
potential in VCPR191Q/wt cells to be severely depolarized, 
a well-recognized feature in multiple ALS/FTD mod-
els that has previously been reported in different VCP 
disease models [80–84]. Dissipation of ��m is associ-
ated with elevated oxygen consumption in all respira-
tory states analysed and with an increase in ETC activity, 
revealing a state of mitochondrial hypermetabolism in 
mutant VCP cells. We attribute the ETC overdrive to a 
compensatory response of mitochondria to restore the 
proton motive force, an essential feature of mitochon-
drial health and output. A link between VCP and mito-
chondrial respiration has been observed before, in a 
study reporting increased oxygen consumption in VCP-
deficient cells [85]. Hypermetabolism (defined at the 

organismal level by increased energy expenditure relative 
to energy intake) is often observed in ALS patients and 
is an important prognostic factor [86, 87], but the cellu-
lar origin of this metabolic state is unclear. Our findings 
suggest that ETC overdrive may contribute to this global 
energy imbalance, at least in ALS/FTD linked to VCP.

Several independent lines of evidence point to 
increased proton permeability across the IMM as one 
probable cause for depolarization of ��m in VCPR191Q/

wt cells. First, oxygen consumption remains higher in 
mutant cells after inhibition of the F1Fo-ATPase, a phe-
notype that often reflects an adaptive response from the 
ETC to counteract a proton leak. Second, although not 
statistically significant, we observed a trend towards 
mild mitochondrial uncoupling in VCPR191Q/wt cells, a 

Fig. 5  Mitochondrial PTP opening is induced by mitochondrial calcium overload in VCPR191Q/wt cells. A Calcein mean intensity for WT and VCPR191Q/wt 
cells both untreated and following exposure to mitochondrial calcium uptake inhibitor MCUi4. B TMRM mean intensity for WT and VCPR191Q/wt cells 
both untreated and following exposure to mitochondrial calcium uptake inhibitor MCUi4. A, B Means ± SEM are shown; dots represent individual 
wells measured across at least three independent experiments. C Basal Mito_FRET ratio in WT and VCPR191Q/wt cells. Mean ± SEM are shown; dots 
represent individual wells measured across at least three independent experiments. (D) Representative normalized Mito_FRET response to 2.5 µM 
thapsigargin (arrow indicates thapsigargin addition) in WT and VCPR191Q/wt cells. Mean ± SEM of the whole cell population for each cell type are 
shown. Statistical significance was evaluated by Two-way ANOVA with Bonferroni correction for multiple comparisons (A, B) or Student’s t-test (C); 
ns p > 0.05, *p < 0.05, ****p < 0.0001



Page 13 of 16Vanderhaeghe et al. Acta Neuropathologica Communications          (2024) 12:161 	

typical consequence of a proton leak. Third, we dem-
onstrated increased opening of the mPTP in mutant 
cells, which is a known cause for mitochondrial depo-
larization and uncoupling [58, 88]. Finally, and most 
importantly, blockade of the mPTP by CypD-targeting 
drugs restored ��m in the VCP cell line, indicating 
that mitochondrial depolarization is a direct conse-
quence of mPTP opening. Notably, calcium accumula-
tion in the mitochondrial matrix, which we identify as 
one possible trigger for mPTP opening, can also cause 
depolarization of ��m (independently of the mPTP), 
by virtue of the positive charge of this bivalent cation 
[89]. An impact of VCP on mitochondrial proton per-
meability is also consistent with an independent study 
showing that pathogenic VCP mutations induce mito-
chondrial uncoupling [85]. mPTP opening is unlikely 
to be the sole mechanism underlying ��m depolariza-
tion in VCP mutant cells, because CyD-targeting drugs 
and the MCU blocker MCUi4 only partially rescue 
��m at concentrations that fully inhibit mPTP open-
ing (Fig. 4D–F and 5A, B). Another likely cause of ��m 
dissipation is increased activity of the F1Fo-ATPase at 
steady state (state 3 respiration), which is reflected by 
larger TMRM responses to oligomycin A in VCPR191Q/wt 
cells (Fig. 2C and Fig. S2).

We show evidence for mitochondrial calcium dysho-
meostasis in VCPR191Q/wt cells, in the form of elevated 
basal [Ca2+]m and increased calcium uptake following 
ER calcium release. Calcium-induced mPTP opening 
may therefore be a compensatory mechanism to release 
excessive calcium from this organelle [90, 91], although 
the involvement of the mPTP in calcium efflux remains 
controversial [92]. How steady-state [Ca2+]m remains 
elevated in VCPR191Q/wt cells in the face of increased 
mPTP opening is unclear. One possibility is that the rate 
of calcium influx exceeds that of calcium efflux through 
the mPTP, a scenario in line with high mitochondrial cal-
cium uptake in VCPR191Q/wt cells (Fig. 5D). Alternatively, 
mitochondrial calcium efflux through the transition pore 
could be negligible under the relatively mild conditions of 
mPTP activation in these cells [92].

The evidence described in this study, linking a clinical 
VCP mutation to the mPTP, is of immediate relevance for 
ALS/FTD, given the central role of this pore in cell death 
and as a prominent drug target. A current multicon-
ductance model for mPTP opening proposes two func-
tionally distinct pores: a high-conductance pore whose 
prolonged opening is implicated in mitochondrial swell-
ing and apoptosis, and a low-conductance pore involved 
in the regulation of physiological processes, including 
mitochondrial calcium homeostasis [93]. Other than 
CypD, the molecular constituents of the mPTP and the 
structural differences between high and low conductivity 

pores are poorly characterized and highly debated. Based 
on the lack of obvious signs of mitochondrial swelling 
and cell death/toxicity in VCPR191Q/wt cells, we favour 
activation of a low conductance pore in VCPR191Q/wt cells, 
although we cannot exclude transient, low frequency 
opening of a high conductance pore.

How expression of the pathogenic VCPR191Q muta-
tion leads to calcium-induced activation of the mPTP is 
an open question that will be the object of future stud-
ies. One possibility is that VCP protects against mPTP 
opening by facilitating the degradation of ubiquitinated 
MICU1 [94, 95], an essential accessory subunit of the 
MCU [96] and the target of the inhibitor MCUi4. Alter-
natively, VCP could control calcium transport from the 
ER to mitochondria at the mitochondria-ER contacts 
sites (MERCS) which have been previously implicated in 
ALS pathogenesis [34, 84, 97]. VCP is known to impact 
endoplasmic reticulum-mitochondria contact through 
interaction with VPS13D [97] and together with VAPB, 
it is among the most relevant MERC controllers in ALS/
FTD pathogenesis [98].

In conclusion, our findings reveal a central role of the 
ALS/FTD gene VCP in modulation of the mPTP and 
mitochondrial bioenergetics. Based on these results, 
we propose a two-tier model of ALS pathogenesis with, 
initially, an adaptive mitochondrial metabolic response 
to subtle increases in mPTP opening. With time, ETC 
overdrive results in accelerated mitochondrial aging, 
with increased production of reactive oxygen species at 
respiratory complexes, reduced calcium buffering and 
compromised ATP production. Around disease onset, 
mitochondria have fully transitioned from a hypermeta-
bolic state to a dysfunctional state, culminating in full-
blown activation of the mPTP and mitochondrial death 
pathways in motor  neurons. This mito-centric disease 
model identifies mitochondrial calcium homeostasis and 
mPTP modulators as potential drug targets.
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