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Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, is classified into four main molecular 
subgroups, but group 3 and group 4 tumors are difficult to subclassify and have a poor prognosis. Rapid 
point-of-care diagnostic and prognostic assays are needed to improve medulloblastoma risk stratification and 
management. N6-methyladenosine (m6A) is a common RNA modification and long non-coding RNAs (lncRNAs) 
play a central role in tumor progression, but their impact on gene expression and associated clinical outcomes in 
medulloblastoma are unknown. Here we analyzed 469 medulloblastoma tumor transcriptomes to identify lncRNAs 
co-expressed with m6A regulators. Using LASSO-Cox analysis, we identified a five-gene m6A-associated lncRNA 
signature (M6LSig) significantly associated with overall survival, which was combined in a prognostic clinical 
nomogram. Using expression of the 67 m6A-associated lncRNAs, a subgroup classification model was generated 
using the XGBoost machine learning algorithm, which had a classification accuracy > 90%, including for group 3 
and 4 samples. All M6LSig genes were significantly correlated with at least one immune cell type abundance in 
the tumor microenvironment, and the risk score was positively correlated with CD4+ naïve T cell abundance and 
negatively correlated with follicular helper T cells and eosinophils. Knockdown of key m6A writer genes METTL3 
and METTL14 in a group 3 medulloblastoma cell line (D425-Med) decreased cell proliferation and upregulated 
many M6LSig genes identified in our in silico analysis, suggesting that the signature genes are functional in 
medulloblastoma. This study highlights a crucial role for m6A-dependent lncRNAs in medulloblastoma prognosis 
and immune responses and provides the foundation for practical clinical tools that can be rapidly deployed in 
clinical settings.
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Introduction
Medulloblastoma (MB) is a tumor of the developing cer-
ebellum usually seen in children. MB is broadly divided 
into four main molecular subgroups: WNT signaling-
activated (WNT), sonic hedgehog signaling-activated 
(SHH) and non-WNT/non-SHH tumors split into two 
main subtypes: group 3 (Grp3), and group 4 (Grp4) [1, 2], 
although other subtypes have been identified [3]. Tumors 
in the WNT subgroup primarily harbor mutations in 
WNT signaling pathway genes such as CTNNB1, while 
SHH subgroup tumors harbor mutations in the SHH 
pathway such as PTCH1, SUFU, and SMO [4]. How-
ever, a lack of distinguishing mutations or copy number 
alterations (CNA) between Grp3 and Grp4 MB make 
them difficult to separate and manage. Recent attempts 
at subgroup classification have attempted to use epigen-
etic markers such as DNA methylation [4–6], while gene 
expression-based subgroup classification is challenging, 
as Grp3/Grp4 tumors exist as a continuum rather than 
as distinct subgroups [5]. While WNT MB is curable and 
certain non-TP53 mutant subtypes of SHH patients also 
have a good prognosis, Grp3 and Grp4 tumors tend to 
be highly aggressive and progress to relapse or metasta-
size [6]. Recent single-cell RNA sequencing (scRNA-seq) 
studies have revealed distinct cells of origin for Grp3 and 
Grp4 tumors [7, 8]. Furthermore, treatment of patients 
with high-risk Grp3 MB with chemoradiotherapy and 
carboplatin improves the 5-year event-free survival by 
19% [9]. Therefore, Grp3 and Grp4 subclassification 
according to cell type and molecular mechanism is vital 
for risk stratification, patient care, and improving man-
agement and outcomes. However, there is currently no 
cost-effective nor rapid clinical classification method.

Long non-coding RNAs (lncRNA) and circular RNAs 
(circRNA) are regulatory non-coding RNAs (ncRNAs) 
that play important roles in MB gene regulation and 
tumor progression [10–12]. Several lncRNAs and cir-
cRNAs have been reported to have oncogenic roles 
and act as potential targets for therapy [13–17]. How-
ever, this field is still in its infancy, with many new 
candidates still being actively researched and discov-
ered. Adding to the complexity of RNA regulation and 
function, chemical modifications of RNA bases such 
as with N6-methyladenosine (m6A), pseudo-uridine, 
and inosine are prevalent RNA modifications that 
add a layer of regulatory information on RNA. These 
modifications occur co-transcriptionally and contrib-
ute to many aspects of the RNA life cycle including 
stability, translation, and transport. m6A dynamics is 
tightly regulated by group of methyltransferase pro-
teins (‘writers’) and demethylases (‘erasers’), with 
another group of proteins able to recognize modi-
fied RNA (‘readers’) to exert specific functions [18, 
19]. These group of writers, erasers, and readers can 

act as m6A regulator genes that play important roles 
in m6A dynamics and, in turn, gene regulation [20]. 
Modifications of ncRNAs, including lncRNAs, are 
notable, as they directly affect RNA stability and regu-
lation, but the role of m6A in pediatric cancers includ-
ing MB has not been explored in detail [21]. Existing 
data suggest that m6A has prognostic value and affects 
immune cell infiltration in brain cancers [22–27], and 
a well-characterized lncRNA GAS5 has been shown to 
have an m6A-dependent role in tumor suppression in 
colorectal cancer (CRC). Methylated GAS5 transcripts 
are degraded by the m6A reader YTHDF3, which 
increases expression of YAP and in turn drives tumor 
progression [28]. Cui et al. showed that downregu-
lation of m6A writers METTL3/METTL14 or m6A 
erasers ALKBH5/FTO reduces m6A on oncogenic 
ADAM19 mRNA, increasing its expression and driv-
ing self-renewal of glioblastoma stem cell, leading to 
aggressive tumor behavior and metastasis [29]. Dong 
et al. showed that ALKBH5 was responsible for m6A 
depletion on lncRNA NEAT1 in glioblastoma cells and 
increased transcript stability, allowing the transcrip-
tional repressor SFPQ to relocate from the CXCL8 
promotor to nuclear paraspeckle bodies, leading to 
upregulation of IL-8 in the tumor microenvironment 
and tumor-associated macrophage (TAM) recruit-
ment. The immunosuppressive effect of TAMs allowed 
tumor progression and was partially rescued by IL-8 
overexpression in ALKBH5-deficient GBM cells [30]. 
NEAT expression was associated with immune check-
point blocker therapy in glioblastoma (GBM) patients 
and increased NEAT1 expression in M1 polarized 
macrophages led to secretion of inflammatory cyto-
kines [31]. LncRNAs have previously been used to 
subclassify MB, but not with respect to m6A modi-
fications [32]. We therefore reasoned that the diag-
nostic and prognostic accuracy of biomarkers for MB 
could be increased by integrating two different layers 
of regulatory information, lncRNAs and their m6A 
modification.

To achieve this, we analyzed bulk transcriptome 
data from over 400 MBs to identify m6A-associated 
lncRNA signatures. We constructed a co-expression 
network and identified modules showing representa-
tion of m6A regulators identified from a previous study 
[33]. Co-expressed lncRNAs in these modules associ-
ated with prognosis were selected as signature genes, 
which were used to calculate a risk score which, com-
bined with other clinical parameters, predicted overall 
survival (OS) for risk stratification. Furthermore, using 
a machine learning model, the m6A-lncRNA signature 
was used for subgroup classification. Finally, we cor-
related the expression of each m6A-associated lncRNA 
and its signature-derived risk score with immune cell 
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infiltration in the tumor microenvironment. Patient 
stratification into high and low risk groups based on 
risk score revealed significant differential expression 
of immune checkpoint and ligand genes. Collectively, 
we identify a new role for m6A-modified lncRNAs 
in immune-related functions and novel candidates 
for further functional characterization and testing as 
immune modulatory agents in MB.

Methods
Data collection and pre-processing
Bulk transcriptome data and associated metadata for 
three discovery cohorts of MB patients were analyzed. 
Raw RNA-seq counts were obtained from OpenPBTA 
(n = 119) [34] and Williamson et al. (n = 331) [5]. Align-
ment files in BAM format were retrieved from the St. 
Jude Cloud (n = 89) [35], with gene counts generated 
using stringtie [36]. Additionally, independent vali-
dation cohorts GSE164677 (n = 31) and the MAGIC 
cohort (n = 507) (unpublished) were used to vali-
date the risk score predicting OS. Validation cohorts 
(GSE181293, GSE164677, and GSE85217; n = 839) were 
used for subgroup classification accuracy testing. A 
summary of the discovery and validation cohorts can 
be found in Supplementary Table 1. Samples with 
missing age and sex metadata were excluded from the 
analysis, and genes represented in all three cohorts 
were selected for analysis. Data were normalized 
using the vst function in DESeq2 [37], and subgroup 
clustering of the samples was visualized using a prin-
cipal component analysis (PCA) plot. In order to per-
form cross-platform data integration and validation of 
the subgroup classification signature in RNA-seq and 
microarray-derived datasets, ComBat batch correction 
from the sva package [38] was performed on normal-
ized gene expression profiles of discovery and valida-
tion cohorts.

Construction of co-expression networks and m6A-
associated lncRNA gene selection
A co-expression network was constructed using 
the weighted gene co-expression network analysis 
(WGCNA) package in R [39]. An appropriate soft 
threshold was identified using power analysis for net-
work construction. The constructed unsigned co-
expression network contained a minimum module size 
of 50 genes and a maximum block size of 20,000. m6A-
associated modules were identified based on represen-
tation of at least one out of 22 m6A regulatory genes 
within the module. Soft threshold selection to identify 
the power for network construction was performed 
with pickSoftThreshold, and an unsigned network 
of genes was constructed using blockwiseModules. 
LncRNA genes co-expressed with m6A regulator genes 

within m6A-associated modules were defined as m6A-
associated lncRNA genes.

Survival analysis and gene selection for calculating the 
M6LSig risk score
LASSO-Cox regression-based feature selection was per-
formed using the glmnet package to identify m6A-asso-
ciated lncRNA genes associated with OS based on gene 
expression using the rms package in R, with age and sex 
as covariates. We selected genes with P-values < 0.05 as 
m6A-associated lncRNA signature (M6LSig) genes signif-
icantly associated with OS. A patient’s risk score [M6LSig 
risk_score] was calculated based on M6LSig expression 
using the following formula:

	
M6LSig risk_score =

n∑

k=1

coef (xk) ∗ xk � (1)

where xk  is the expression of the kth gene, and coef (xk) 
is the coefficient of the Cox regression of the kth gene.

M6LSig risk score-based prognostic model for 
medulloblastoma
Risk scores were calculated for all samples, and the 
median risk score was used to divide the samples into 
low- and high-risk groups based on lower and higher risk 
scores, respectively. Associations between risk score, age, 
and sex and OS were evaluated using a Cox proportional 
hazards (cph) model in the rms R package. Using the cph 
model generated using risk scores, age, and sex as vari-
ables and OS time and status, a points-based nomogram 
was developed to assess OS. Nomogram accuracy was 
assessed with calibration curves and receiver operating 
characteristic (ROC) curves in independent validation 
cohorts.

Machine learning model to classify medulloblastoma 
samples by lncRNA gene expression
Boruta package was used to identify the minimum set 
of genes capable of accurately subgrouping MBs. Briefly, 
the Boruta training function was run for 100 iterations to 
identify the gene set required for subgroup classification 
based on gene expression of lncRNAs co-expressed with 
m6A regulator genes in WGCNA modules.

Samples from the discovery cohort were divided into 
training and test sets in an 80:20 ratio. The training set 
was used to generate a model for subgroup classification. 
Eight algorithms were generated using the caret pack-
age in R for subgroup prediction based on M6LSig gene 
expression: glmnet, linear discriminate analysis (LDA), 
support vector machine (SVM), XGBoost, gradient 
boosting (GB), random forest (RF), K-nearest neighbors 
(KNN), and C50. We used the test set to evaluate model 
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performance, precision, recall, and F1 scores, and multi-
class ROC curves were calculated to assess the classifica-
tion accuracy of each model. The performance of the top 
5 models was evaluated using multi-class ROC curves 
using independent validation set not used for training the 
classifier models. The best performing model was chosen 
based on the highest multi-class accuracy.

Functional characterization of differentially expressed 
genes between low- and high-risk groups
Significant differentially-expressed genes (DEGs; 
adjusted P-value < 0.05) were identified between high- 
and low-risk groups using DESeq2 in R. We further 
ranked the expressing genes based on their test statistics 
for gene ontology and KEGG pathway gene set enrich-
ment analysis (GSEA) using the clusterprofiler package. 
The significance of differential expression of 19 immune 
checkpoint-related genes and ligands was also examined.

Association between M6LSig and immune cell infiltration 
in the tumor microenvironment
Immune cell infiltration in the tumor microenvironment 
(TME) was identified using the cell type deconvolution 
method CIBERSORTx [40], with the LM22 dataset of 
22 immune cell type gene expression patterns used as a 
reference set. Normalized gene expression, transcripts 
per million (TPM) for samples in the discovery cohort 
and LM22 reference datasets were used as references 
for immune cell deconvolution. Significant cell type 

proportions (P < 0.05) were selected, and correlations 
between individual M6LSig gene expression and risk 
scores with immune cell type proportions were calcu-
lated. Using R, the correlations between individual gene 
expression to cell type proportions and risk score were 
visualized. The complete analysis workflow is shown in 
Fig. 1.

Cell lines and cell culture
The human MB cell line D425-Med was purchased from 
Sigma-Aldrich (St. Louis, MO), which was STR profiled 
and Mycoplasma tested. D425 cells were cultured in 
DMEM/F12 with 10% FBS and 1% penicillin/streptomy-
cin. Cells were grown in a humidified incubator at 37 °C 
in 5% CO2, and the culture medium was replaced every 3 
to 4 days. The cells were gently trypsinized (0.05%, Gibco, 
Thermo Fisher Scientific, Waltham, MA) for subculture.

Quantitative real-time PCR
Total RNA was purified as per the manufacturer’s 
instructions using the Direct-zol RNA Miniprep kit 
(Zymo Research, Irvine, CA). RNA yields were measured 
with a NanoDrop 8000 spectrophotometer (Thermo 
Fisher Scientific). High-Capacity cDNA Reverse Tran-
scription Kits (Applied Biosystems, Waltham, MA) were 
used to reverse transcribe 500 ng RNA, with quantitative 
PCR performed using SYBR Green Master Mix assays 
(Applied Biosystems). The primer sequences are listed in 
Supplementary Table 2.

Fig. 1  Workflow depicting the datasets analyzed and the steps involved in identifying m6A-associated lncRNA expression-based risk scores for predicting 
the survival of medulloblastoma patients
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Cell proliferation assay
D425 cells were harvested in the logarithmic phase and 
cultured in 96-well plates for varying times for the cell 
proliferation assay. 20 µl MTS solution (Promega, Madi-
son, WI) was added to each well, and the absorbance 
(optical density value) was measured at 490  nm on the 
EnVision 2105 microplate reader (PerkinElmer, Waltham, 
MA) after 2 h.

Statistical analysis
Risk score was calculated according to Eq.  1. Samples 
were divided into high and low risk group based on the 
risk score value being higher or lower than the median 
risk score value. Differential expression analysis between 
high and low risk group samples was performed using 
DESeq2. Adjusted p-value cut-off 0.05 was used to iden-
tify significant differentially expressed genes between 
high risk and low risk patient groups. Cell proliferation 
and qRT-PCR data is represented as mean ± SD. Signifi-
cance of differences between the groups were calculated 
using standard student’s t-test. P-value cut-off of 0.05 was 
used for determining statistical significance.

Results
Identification of an m6A regulator and lncRNA gene 
co-expression network
The discovery cohort consisted of 539 samples (Open-
PBTA; Williamson et al. and St. Jude cohorts) and 18,872 
genes. Samples with missing clinical metadata, such as 
age and sex, were excluded. The PCA plot shows sample 
clustering by subgroup for 469 samples from RNA-seq 
datasets after normalization (Fig.  2a). Gene expression 
profiles from 469 samples were used to build WGCNA 
co-expression modules. An unsigned co-expression gene 
network with 23 modules was constructed (Fig.  2b). 
Modules with at least one m6A regulator gene were 
identified as m6A-associated modules; 74 lncRNA genes 

(gencode v44) were significantly co-expressed with these 
m6A regulatory genes (Supplementary Table 3a-b).

Construction of the m6A-lncRNA gene signature
m6A-associated lncRNA genes were associated with 
patient OS. In total, 268 samples had survival metadata 
available, including age and sex covariates. Survival time 
was censored at 10 years. LASSO-Cox regression analy-
sis was performed to identify m6A-associated lncRNAs 
associated with survival by selecting an appropriate 
lambda from the regression analysis (Supplementary 
Fig. 1a-b), and five lncRNAs were significantly associated 
with OS (Fig. 3a). An m6A-lncRNA signature risk score 
was calculated for each patient based on the expression 
of these five lncRNAs, and samples were divided into 
those above (high risk) or below (low risk) the median 
of the risk score. Using Cox multivariable regression, we 
found significant associations between risk score and 
OS, with low-risk scores showing better survival (haz-
ard ratio (HR) = 0.42; 95%CI 0.27–0.66; P < 0.001). Simi-
larly, patient age (HR 0.48, 95%CI 0.29–0.79; P = 0.004) 
was associated with OS and, while sex had an HR of 0.69 
(95%CI 0.42–1.13; p = 0.146) for OS, this was not quite 
significant (Fig.  3b). However, given the marginal sig-
nificance and previous reports of a significant group 3 
bias for male vs. female patients (2:1) and a significantly 
poorer five-year survival for males [41], we retained sex 
in subsequent prognosis calculations.

Discovery datasets were divided into training and test 
sets (90:10, respectively). Cox proportional hazards was 
used to model the training data and calculate the prob-
ability of 1-, 3-, and 5-year survival based on five m6A-
lncRNA signature risk scores, age, and sex. The model 
was used to construct a nomogram (Fig. 4a), which was 
evaluated using calibration curves (Fig.  4b). Calibration 
curves provide information about agreement between 
observed versus expected probabilities of the estimates, 
where a linear relationship with a slope of the curve close 

Fig. 2  (A) PCA plot of samples clustering by subgroup after batch correction and cross platform normalization. (B) Dendrogram showing correlation 
of genes within gene co-expression modules identified by WGCNA. Genes co-expressed within the same module are represented by the same color

 



Page 6 of 14Joshi et al. Acta Neuropathologica Communications          (2024) 12:138 

to 1 indicates a high level of accuracy in predicting the OS 
of patients with MB. The best survival predictions were 
obtained using risk score, age, and sex for 1- and 3-year 
survival. Independent RNA-seq datasets (GSE164677 
and MAGIC cohort) were used to validate the association 
of the five gene signature-derived risk score’s association 
with OS (Fig. 3c-d). Test data were used to generate ROC 
plots, and an area under curve (AUC) > 0.9 indicated a 
high accuracy of the five gene signature derived risk score 
in predicting OS (Fig. 4c-d).

Machine learning models for subgroup classification based 
on m6A-associated lncRNA gene expression profiles
Normalized and batch-corrected gene expression from 
the discovery cohorts (n = 469) were next used to train 
machine learning-based subgroup classification mod-
els. Out of 74 lncRNAs, 67 were identified as important 
features for subgroup classification using Boruta-based 

feature selection. Samples were randomly divided into 
training and test sets (80:20 ratio, respectively), and eight 
ML methods were assessed for accuracy in subgroup 
classification (Fig. 5a). LDA was the best-performing ML 
method, with a median accuracy of 97.3% (Table 1). Using 
test and independent validation cohorts (GSE164677, 
GSE181293, GSE164677, and GSE85217), the multiclass 
AUCs for the top five performing models were calculated, 
together with overall subgroup classification accuracy, 
per-group classification accuracy, and F-score. Table  2 
shows the F-score for each model for individual subgroup 
classification accuracy and overall accuracy. Glmnet and 
XGBoost were the two best classifiers. XGBoost per-
formed slightly better for Grp3 classification (Fig. 5b and 
Supplementary Fig.  2) and also performed the best for 
Grp3 vs. Grp 4 classification (Fig. 5b).

Fig. 3  (A) Plot with hazards ratio on the X-axis for each of the five genes significantly associated with OS. (B) Forest plot showing OS association and 
hazards ratio for each co-variate including risk score. (C-D) K-M plots derived from risk scores in independent MB datasets to validate the five-gene 
signature-derived risk score’s association with OS.
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Functional and immune characterization of the m6A-
assocaited lncRNA signature and risk score
Differential expression analysis of genes between high- 
and low-risk patient groups identified 10,676 DEGs, 
represented as a volcano plot in Fig. 6a. Functional char-
acterization of DEGs identified key biological processes 
involved in ribonucleoprotein complex biogenesis, axon 
development and axonogenesis, and regulation of ner-
vous system development, amongst others (Fig.  6b). 

Immune cell proportions within the TME were next cal-
culated by gene expression-based cell type deconvolution 
using CIBERSORTx and the LM22 dataset, which repre-
sents the expression of 547 genes in 22 immune cell types 
derived from scRNA-seq data. Cell type proportions per 
sample were calculated for 499 samples profiled by RNA-
seq, which were then correlated with the expression of 
individual genes in the m6A-lncRNA signature and the 
risk score. All lncRNAs significantly correlated with at 

Fig. 4  (A) Nomogram to predict 1-year, 3-year and 5-year OS in patients with MB based on risk score, age, and sex. (B) Calibration curves representing 
the accuracy of the survival prediction model based on risk score, age, and sex of the patients. (C-D) ROC curves showing the predictive accuracy of the 
nomogram-based survival probability of patients with MB.
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Table 1  Accuracy of eight machine learning models for subgroup classification based on the expression of 67 m6A-associated lncRNA 
genes
ML model Min. 1st Qu. Median Mean 3rd Qu. Max.
RF 0.87 0.91 0.93 0.93 0.95 0.97
GBM 0.91 0.93 0.95 0.95 0.96 0.97
C50 0.84 0.89 0.89 0.90 0.92 0.95
LDA 0.93 0.95 0.97 0.97 0.98 0.99
GLMNET 0.96 0.96 0.97 0.97 0.97 0.99
KNN 0.88 0.89 0.93 0.92 0.95 0.97
SVM 0.95 0.96 0.97 0.97 0.97 0.99
XGBOOST 0.91 0.93 0.95 0.95 0.97 0.99

Table 2  Test set-based accuracy, F score, and AUC of the top five ML classifiers for subgroup classification of samples based on the 
expression of 67 m6A-lncRNA genes

Discovery cohort Validation cohort
Class: WNT Class: SHH Class: 

Grp3
Class: 
Grp4

Multi-class 
AUC

Class: WNT Class: SHH Class: 
Grp3

Class: 
Grp4

Multi-
class 
AUC

GLMNET 0.96 1 0.9333 0.988 0.97 0.82873 0.9255 0.7959 0.9206 0.88
SVM 0.96 0.9796 0.9655 0.988 0.988 0.82222 0.9276 0.8 0.9231 0.87
LDA 1 1 1 1 1 0.8306 0.9038 0.7744 0.885 0.86
XGBOOST 0.96 0.9583 0.8571 0.9647 0.955 0.82418 0.9155 0.8127 0.9148 0.88
GBM 0.96 0.9362 0.8387 0.9639 0.955 0.83243 0.9026 0.787 0.8976 0.87

Fig. 5  (A) Feature importance plot showing importance of each gene in subgroup classification. Genes in green are confirmed important genes and 
genes in red are rejected genes. (B) Evaluation of model accuracy of the eight ML models used for subgroup classification based on the 67 m6A-lncRNA 
gene signatures. (C) AUC plots show the XGBoost model-based classification accuracy between individual MB subgroups in test cohorts
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least one immune cell type in the TME, as determined by 
cell type deconvolution analysis (Fig. 7a). The risk score 
was found to be positively correlated with abundance of 
naïve T cells CD4 and negatively correlated with follicu-
lar helper T-cells and eosinophils in tumor microenviron-
ment (Table 3). The differential expression of 19 immune 
checkpoint (IC) and ligand genes were also examined in 
high- and low-risk patients (Fig.  7b), and six IC genes 
were significantly differentially expressed (Fig. 7c).

METTL3 and METTL14 knockdown affects cell proliferation 
of Grp3 MB cells and expression of M6LSig genes
Finally, we knocked down METTL3 and METTL14, key 
m6A writers, using siRNAs in D425 Grp3 MB cells. There 
was an average 62.5% and 70% reduction in prolifera-
tion of D425 cells after 72 h of METTL3 and METTL14 
knockdown (Fig.  8a). qRT-PCR of the five genes in the 
signature showed that three lncRNAs (MATN1-AS1, 
LINC01963, and GAS5) were significantly upregulated 
in at least one of the knockdown condition samples 
(siMETTL3 or siMETTL14) compared with control 
(siNC) (Fig. 8b). RAET1E-AS1 and LINC02145 were not 
expressed in this cell line, as confirmed in RNA-seq data 
of D425 cells in the CCMA database [42] (expression 0 or 
< 1 CPM).

Discussion
Medulloblastoma (MB) is one of the most prevalent 
childhood brain tumors, with the highest incidence in 
children aged 10–14 years [43]. Children aged under 
three years have a higher risk of death from the dis-
ease, especially those with Grp3 or Grp4 tumors [6]. 
The recurrence rate for MB is high at 30% [44]. Differ-
ent MB subgroups have different etiologies and cells of 
origin [4], and the resulting tumors progress differently, 
requiring personalized management. Subgroup classifi-
cation requires histopathological analysis, but the Grp3 
and Grp4 subgroups are challenging to differentiate, with 
costly and time-consuming DNA methylation-based clas-
sification currently the gold standard for Grp3 and Grp4 
classification. There is therefore a clinical need for rapid 
point-of-care diagnostics for accurate subgroup classi-
fication and prognostication, especially in low-resource 
settings.

Our group previously reported a significant role for 
ncRNAs in MB subgroup classification and therapy [15–
17, 32], and previous studies have reported the dynam-
ics and dysregulation of m6A regulators in MB patients 
[21, 45]. RNA methylation is vital for regulating lncRNA-
related disease progression and is an important therapeu-
tic target. Nevertheless, m6A-based lncRNA regulation 
of tumor progression and clinical outcomes in MB have 
largely remained unexplored.

Here we systematically analyzed bulk transcriptomes 
from MB patients and integrated clinical traits and meta-
data to identify an m6A-associated lncRNA gene signa-
ture (M6LSig) with diagnostic and prognostic potential. 
LncRNAs co-expressed with m6A regulators are poten-
tially regulated in an m6A-dependent manner. Our 
analysis revealed a five-gene signature significantly asso-
ciated with prognosis in the context of age and sex. Due 

Table 3  Correlation and significance (P-values) of risk scores, 
with each cell type identified by gene expression-based cell type 
deconvolution
Cell type R P-value
naïve T cells CD4 0.14 0.02
Follicular helper T-cells -0.13 0.04
Eosinophils -0.13 0.04

Fig. 6  (A) Volcano plot of DEGs between high- and low-risk patients. Each dot represents a gene, and dots colored in blue are significantly differentially 
expressed (adj.P.val < 0.05). (B) Gene ontology biological processes enriched for differentially expressed genes between high and low risk patient groups
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Fig. 7  (A) Dot plot showing correlations (dot color) and significance (dot size) of lncRNA gene expression with cell type abundance calculated by 
CIBERSORTx. (B) Heatmap showing normalized expression of 19 immune checkpoint and ligand genes. Top row shows patient subgroups, and the panel 
below shows the risk group of the patient. The receptor or ligand label of the gene is represented in the vertical column with L & R labels. (C) Significant 
differences in expression of six IC ligands and receptors in high- and low-risk patients

 



Page 11 of 14Joshi et al. Acta Neuropathologica Communications          (2024) 12:138 

to intragroup heterogeneity and significantly different 
prognostic outcomes of subtypes within each subgroup, 
additional covariate of subgroup classification was not 
included in the model. The risk score calculated based 
on the expression values of these five genes was signifi-
cantly associated with OS. High concordance of observed 
versus expected probabilities on calibration curves indi-
cated that the model generated for predicting OS was 
highly accurate for one-, three-, and five-year survival. 
To aid clinical implementation, we generated a nomo-
gram requiring the patient’s risk score, age, and sex for 
OS prediction. Eight ML-based classification models 
were also evaluated to determine the most precise algo-
rithm for subgroup classification based on the 67-genes 
signature. XGBoost outperformed the other approaches, 
with > 90% accuracy for subgroup classification. These 
models have direct clinical application and are adapt-
able to diverse gene analysis platforms. Compared to 
other high throughput techniques dependent on quanti-
fying bulk transcriptomes or DNA methylation profiles 
from patients, our small panel of genes are easier to scale 
and implement in clinical settings, even with limited 
resources availability. Although the roles of the lncRNAs 
forming this signature are not currently understood in 
MB, they have been implicated in many other cancers. 
For example, GAS5 has been reported to have prognos-
tic value in CRC, where GAS5 regulates the transport 
and decay of YAP, an oncogene responsible for tumor 
progression in the disease. YTHDF3 can recognize and 
degrade m6A-containing GAS5 transcripts and hence 
negatively impact YAP degradation [28]. Further work 
is now needed to explore the functions and regulation of 
these lncRNAs.

Immune cell infiltration in the TME significantly 
impacts tumor progression, patient survival, therapy 
responses, and metastasis, including in MB, where CD8+ 
T cell infiltrates are associated with prognosis of MB 
patients. However, most MB tumors are considered ‘cold 
tumors’, i.e., the immune response is suppressed or inac-
tive. Hence, immune modulation is a potentially impor-
tant strategy for treating MB tumors, and novel targets 

for immune modulation hold important therapeutic and 
commercial potential. We explored correlations between 
expression of the five m6A-associated lncRNA genes and 
the abundance of 22 immune cell types within the MB 
TME, and all five genes showed significant positive or 
negative correlations with at least one of the 15 immune 
cell types (Fig. 6A). Correlating risk scores with immune 
cell type abundance in the TME identified a negative cor-
relation with follicular helper T cells and eosinophils and 
a positive correlation with naive CD4+ T cells. Hence, 
the role of m6A-associated lncRNAs in regulating T cell 
and eosinophil infiltration and disease outcome is a novel 
therapeutic avenue for further exploration.

Clinically-applicable risk scores are important for per-
sonalized medicine. The result shown in Fig. 7b reports 
the dynamic expression patterns of the immune check-
point and ligand genes in high- and low-risk patients, 
classified by their assigned subgroups. The plot shows the 
heterogeneity in the expression pattern of the immune 
checkpoint and ligand genes in the risk score-based 
stratified population of patients. Risk stratification by 
risk score is distinct from the subgroup classification-
based risk stratification and that expression of immune 
checkpoint and ligand genes in samples with the same 
assigned subgroups are not similar. This indicates that 
an immune therapy approach and understanding the 
tumor microenvironment might involve additional risk 
factors than subgroup classification alone. Patients with 
a high-risk score showed significantly increased expres-
sion of 4-1BB, which is a positive stimulator of an anti-
oncolytic immune response [46, 47]. Previous reports 
have shown positive outcomes for patients stimulated 
with anti-4-1BB antibodies, and combined low-dose radi-
ation and anti-4-1BB antibodies have also been explored 
as a potential alternative therapy in MB patients [47, 48]. 
Taken together, our newly developed risk score has many 
clinical and personalized medicine applications in MB 
treatment and care.

The m6A writers METTL3 and METTL14 were signifi-
cantly associated with proliferation of Grp3 cells in vitro. 
Zhang et al. similarly showed that METTL3 knockdown 

Fig. 8  (A) Cell proliferation assay showing decreased proliferation of D425 Grp3 MB cells upon knockdown of m6A writers METTL3 and METTL14. (B) qRT-
PCR validation of dysregulation of three M6LSig genes upon knockdown of METTL3 or METTL14 in D425 cells compared with control samples
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in SHH MB cell lines (DAOY and ONS-76) significantly 
impacted cell proliferation [45]. Hence, m6A regulatory 
genes are important for tumor progression and growth. 
Our results also indicate that manipulation of part of the 
m6A machinery has a significant impact on the regula-
tion of many genes including three of the five lncRNAs 
forming part of the M6LSig in Grp3 MB cells, suggesting 
that these lncRNAs may be functional. Taken together, 
these results highlight a key role for m6A regulators in 
MB tumor growth and potentially influencing expression 
of prognostic lncRNAs in an m6A-dependent manner.

The results of this study highlight a crucial role for 
m6A-dependent lncRNAs in MB prognosis and immune 
responses. Further exploration and functional charac-
terization of these identified genes and pathways is now 
required to determine the role of m6A in regulating 
immune cell infiltration. Our nomogram provides the 
basis for a useful and practical tool that can be rapidly 
deployed in clinical settings for translational applications.

Conclusions
We performed systematic in-silico analysis of publicly 
available bulk transcriptomes generated from the tumors 
of MB patients to identify a five gene m6A-associated 
lncRNA signature potentially linked to tumor progres-
sion and patient survival. Risk score derived from the 
five-gene signature has prognostic prediction ability. 
Another 67 gene lncRNA signature, which also contains 
the five prognostic lncRNAs, was identified with capabil-
ity to perform subgroup classification with high accuracy. 
Our results indicate that m6A depletion by m6A writ-
ers (METTL3 and METTL14) knockdown affected the 
expression of a subset of these signature lncRNA genes 
in Grp3 MB cell line. Depletion of global m6A from tran-
scriptome by m6A writers (METTL3 and METTL14) 
knockdown negatively affected the Grp3 MB cell line 
proliferation. Patients stratified by their risk score into 
high and low risk groups showed different gene expres-
sion patterns and biological processes. The expression 
of immune checkpoint genes and ligands was signifi-
cantly different between high and low risk group patients. 
Expression of five lncRNA prognostic genes was also 
found to be significantly correlated with abundance of a 
subset of immune cells within tumor microenvironment. 
Taken together, these findings indicate the use of risk 
score-based stratification as potential marker for person-
alized immune therapy development application.
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