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Abstract

NHERF1/EBP50, an adaptor protein required for epithelial morphogenesis, has been implicated in the progression of
various human malignancies. NHERF1-deficient mice have intestinal brush border structural defects and we report here
that they also have disorganized ependymal cilia with development of non-obstructive hydrocephalus. Examination of
mouse and human brain tissues revealed highest NHERF1 expression at the apical plasma membrane of ependymal cells.
In ependymal tumors, NHERF1 expression was retained in polarized membrane structures, such as microlumens, rosettes
and canals, where it co-localized with some of its ligands, such as moesin and PTEN. Analysis of a comprehensive panel
of 113 tumors showed robust NHERF1 labeling of microlumens in 100% of ependymomas, subependymomas, and
pediatric anaplastic ependymomas, and in 67% of adult anaplastic ependymomas. NHERF1 staining was present in 35%
of ependymoma cases that lacked reactivity for EMA, the routine immunohistochemical marker used for ependymoma
diagnosis. NHERF1 labeling of microlumens was either absent or rarely seen in other types of brain tumors analyzed,
denoting NHERF1 as a reliable diagnostic marker of ependymal tumors. Anaplastic foci and a subset of adult anaplastic
ependymomas showed complete absence of NHERF1-labeled polarity structures, consistent with a loss of differentiation
in these aggressive tumors. These data highlight a role for NHERF1 in ependymal morphogenesis with direct application
to the diagnosis of ependymal tumors.
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Introduction
In the development of the central nervous system
(CNS), ependymal cells arise from the asymmetric
division of radial glia, the polarized precursor cells spanning
the central canal to the pia mater [1,2]. Ependymal cells are
terminally differentiated glial cells that line the ventricular
system and retain the polarity of their precursors. Arranged
as a single layer of cuboidal cells with adherens junctions,
basally located nuclei and specialized apical plasma
membrane (PM) containing cilia and microvilli, they
resemble epithelial cells forming glandular lumens except
for the lack of a well-defined basement membrane.
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Ependymal cells form the cerebrospinal fluid (CSF)-brain
barrier and, through the unidirectional beat of their cilia,
they direct the flow of the CSF in the ventricular system.
Pathologically, structural alterations of the ependymal cilia
may lead to hydrocephalus development [3], whereas the
uncontrolled proliferation of ependymal cells or their pre-
cursors results in the growth of generally non-infiltrative
glial ependymal tumors. Depending on their mitotic rate,
ependymal tumors fall into three categories, in increasing
order of aggressiveness: subependymomas (WHO grade I),
ependymomas (WHO grade II) and anaplastic ependymo-
mas (WHO grade III). Whereas subependymomas occur
in adults and have a benign course, higher grade tumors
are more likely to arise in childhood where overall 5-year
survival rates of 60% are seen [4]. These rates have not
improved significantly in the past 40 years due to lack of
effective chemotherapy and a poor understanding of tumor
pathogenesis [5].
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NHERF1/EBP50 (Na+/H+ exchanger 3 regulating factor
1; ezrin-radixin-moesin (ERM) binding phosphoprotein
50) is an adaptor protein localized mainly at the apical PM
in human epithelia [6]. NHERF1 interacts with the ERM-
NF2 (neurofibromatosis 2) cytoskeletal proteins via its
carboxyl (C)-terminal ERM-binding region and with many
ligands, including PTEN tumor suppressor and platelet-
derived growth factor receptor (PDGFR), via its amino
(N)-terminal tandem PDZ (PSD95-Dlg1-ZO1) domains
[7,8]. NHERF1 behaves as a tumor and epithelial-to-
mesenchymal transition suppressor in cultured cells,
through its effects on PTEN and β-catenin [9-11], and is
required for gland morphogenesis with lumen formation
in three-dimensional polarized epithelium [12]. Import-
antly, NHERF1 overall loss or PM displacement has been
reported in aggressive tumors, including carcinomas and
glioblastoma [9,13,14]. NHERF1 knockout mice have ul-
trastructural defects of the intestinal apical brush border
membrane and of the cochlear outer hair cell cilia bun-
dles [15,16]. Prompted by the observation that these
mice also develop non-obstructive hydrocephalus, we
mapped the highest NHERF1 expression in the CNS at
the specialized apical PM of ependymal cells. The immu-
nohistochemical of ependymal tumors showed a
unique expression of NHERF1 and some NHERF1-
associated molecules, such as moesin, in microlumens
that represent precursor polarized membrane structures
retained by neoplastic ependymal cells. Besides this robust
and specific NHERF1 expression that we propose as a
diagnostic marker for these tumors, a gradual loss of
NHERF1 was observed in anaplastic ependymomas, com-
patible with a previously demonstrated tumor suppressor
role for NHERF1.

Materials and methods
Animals
The NHERF1-deficient mice were inbred for 10 generations
in C57BL/6J background and genotyped as described [16].
Newborn mice were observed regularly for skull deformity
or signs of neurological impairment. When skull deformity
was present, mice were sacrificed and the skulls were dis-
sected and grossly examined by serial sectioning following
decalcification. To assess the incidence of subclinical
hydrocephalus, whole litters of 5 week-old progeny from
NHERF1 heterozygous parents were examined as above.
All experiments were performed under approved MD
Anderson Cancer Center IACUC protocols.

Mouse tissue histology and immunostaining
Brains were fixed overnight in 10% formalin, embedded in
paraffin and 4μm sections were processed for hematoxilin
and eosin (H&E) staining as described [16]. The immuno-
fluorescence analysis was performed as described [11] with
NHERF1 1:300 (Abcam, Cambridge, MA), β-catenin 1:500
and acetylated α-tubulin 1:1000 (Sigma-Aldrich, St Louis,
MO) primary antibodies. Image stacks were acquired with
a Zeiss Axiovert 200M inverted microscope (Carl Zeiss
MicroImaging, Thornwood, NY) and deconvolved with
AxioVision Rel 4.5 SP1 software.

Human specimens, histology and electron microscopy
Brain tumor resection or biopsy specimens were ob-
tained from the Division of Neuropathology Univer-
sity of Texas Southwestern Medical Center, Dallas,
TX, Division of Neuropathology, Columbia University,
New York, NY and Department of Pathology, Vander-
bilt University, Nashville, TN. The specimens were
processed for H&E staining or immunohistochemistry
(IHC) [17], with antibodies for NHERF1 1:3200
(Thermo/Fisher, Waltham, MA), moesin 1:100, PTEN
1:100 and PDGFRα 1:100 (Cell Signaling Technology,
Danvers, MA), NF2 1:200 and YAP1 1:200 (Santa
Cruz Biotechnology, Santa Cruz, CA), β-catenin
1:1600 (Invitrogen, Carlasbad, CA), EGFR 1:1000 and
EMA 1:400 (Dako, Carpinteria, CA), and PHLPP2
1:100 (Bethyl Laboratories, Montgomery, TX).

Statistical analysis and scan imaging
Images were acquired at 20x magnification, and where
specified, at 40x magnification, with Aperio Scanscope CS2
whole slide image system (Leica Biosystems, San Diego,
CA), analyzed by ImageScope software, version
12.1.0.5029, and quantified using the Nuclear algo-
rithm, version 11.2. Three tumor areas were analyzed
from each slide. When multiple tumor fragments were
present, areas from 3 different fragments were chosen.
The Nuclear algorithm was fine-tuned for object recogni-
tion, including intensity thresholds, edge trimming of ob-
jects and smoothing/declustering of nuclei/lumens, in
order to obtain the primary output represented by
the number of positive lumens and number of negative
nuclei. Numerical data were examined for normality of dis-
tribution and expressed as mean ± SEM by using the
GraphPad Prism program (GraphPad Software, La Jolla,
CA). Two-tailed t-test with Welch’s correction for variances
significantly different was used to analyze the differ-
ences between groups. Statistical significance was con-
sidered for P < 0.05. Confidence intervals for all tests
were 95%.

Results
NHERF1-deficient mice develop hydrocephalus
We and others have characterized a series of morphological
and phenotypical alterations in NHERF1-deficient mice that
include phosphate reabsorption impairment, altered intes-
tinal brush border membrane, lack of development of the
lobuloalveolar lactating mammary gland and abnormalities
of cochlear cilia bundles with hearing defects [15,16,18,19].
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A proportion of NHERF1-deficient mice also showed
dilatation of the lateral, 3rd and 4th ventricles of the brain
that define non-obstructive hydrocephalus (Figure 1A-B).
The degree of hydrocephalus varied from overt forms,
in which skull deformity and severe developmental
impairment were present (Figure 1A), to clinically in-
apparent forms, in which mild to moderate dilatation
Figure 1 NHERF1-deficient mice develop hydrocephalus. A-B. Compari
smaller size and bossed skull (arrow) (A) and severely distended 3rd (3V) an
thin nutshell appearance of the cerebral hemispheres (B) in the NHERF1(−/
(+/+) mice and their NHERF1(−/−) littermates with subclinical mild hydroceph
and β-catenin labeling of adherens junctions (arrows) in both genotypes. D. A
shows robust cilia tufts in NHERF1(+/+) mice and present but disorganized cil
of the ventricles was observed after skull dissection
and brain sectioning (Additional file 1: Figure S1A).
Wheareas overt forms were sporadic, the dissection of
several litters generated from NHERF1 heterozygous
parents showed a variable penetrance of the mild
phenotype with rates up to 100% (Additional file 1:
Figure S1B).
son between 5-week-old NHERF1(+/+) and (−/−) littermates showing
d lateral ventricles (LV) with compression of the brain, resulting in a
−) littermate. C. Immunoflourescence analysis of 5-week-old NHERF1
alus shows NHERF1 labeling of the apical PM in NHERF1(+/+) ependyma
cetylated tubulin immunofluorescence labeling of the ependymal cilia
ia in NHERF1(−/−) littermates with subclinical mild hydrocephalus.
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Examination of NHERF1 expression in brain sections
showed that NHERF1 is most highly expressed at the
apical PM of ependymal cells, followed by lower expression
levels in choroid plexus cells (Additional file 1: Figure S2).
Both cells types have been involved in the development
of non-obstructive hydrocephalus, either through impaired
cilia motion in the case of ependymal cells [3] or by
hyperproduction of CSF, usually in choroid plexus
hyperplasia [20]. Since we did not observe choroid
plexus hyperplasia in NHERF1-deficient mice, we further
characterized the ependymal cells. In overt hydrocephalus
forms, the ependymal layer was flattened and dis-
rupted (Additional file 1: Figure S3), most likely sec-
ondary to increased CSF pressure. In the mild forms,
co-staining with NHERF1 and β-catenin antibodies
showed only minor flattening of the ependymal layer
and preservation of the lateral cell-cell adherens junc-
tions (Figure 1C). In the latter forms, labeling of the
ependymal cilia with acetylated tubulin antibody
showed cilia disorganization in NHERF1-deficient
animals as compared to the prominent tufts of cilia
observed in wild-type animals (Figure 1D). These results
suggested an involvement of NHERF1 in structuring
the apical PM of ependymal cells by controlling cilia
distribution.
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Figure 2 NHERF1 labels polarity membrane structures in ependymom
normal ependyma (A) and microlumens in ependymoma (B). C. Serial sect
apical PM labeling of rosettes, canals and ring-like structures (arrows) by NH
NHERF1 labels polarity membrane structures in
ependymal tumors
The association between the intestinal morphogenetic
function of NHERF1 in NHERF1-deficient mice and an
oncogenic function in human colorectal cancer [9,16],
sugested the possibility of a parallel association between
a structural role of NHERF1 in ependymal apical PM
organization and the pathogenesis of ependymal tumors.
To verify this hypothesis, we confirmed that the high
ependymal apical PM expression found in mouse CNS is
present in human CNS (Figure 2A). We have previously
shown that the NHERF1 apical PM expression from
colonic epithelial cells is lost early in the progression
of colorectal cancer [9]. Strikingly, in ependymal tumors
NHERF1 remained prominently retained in perinuclear
dot-like structures (Figure 2B) that correspond ultrastruc-
turally to microlumens, polarized structures characteristic
for neoplastic cells of ependymal origin. Microlumens
are delineated by a membrane containing the same
specialized structures, microvilli and occasionally cilia,
as the polarized apical PM of non-neoplastic ependymal
cells. Ring-like structures, deemed to be specific for
ependymoma [21], and likely representing larger
microlumens, were also labeled by NHERF1 (Figure 2C,
arrows).
moma

NHERF1ndyma

Canals and ring-like structures

a. A-B. IHC with NHERF1 antibody highlights the apical PM of human
ions from ependymoma cases stained with H & E and NHERF1 show
ERF1.
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Histologically, a minority of ependymomas harbor
characteristic arrangements of neoplastic cells in rosettes
delimiting a lumen (“true rosettes”) or, more rarely, in
canals where they mimic closely the polarized lining of
the ventricles. NHERF1 labeled the apical PM of true
rosettes and canals (Figure 2C), indicating that in
ependymoma NHERF1 specifically labels polarized struc-
tures which include a membrane-bordered lumen.

NHERF1 organizes protein complexes with moesin and
PTEN in ependymal polarity structures
NHERF1 establishes protein complexes at the apical PM of
epithelia that are essential for apico-basal polarity [12,16].
A

B
NHERF1 Moes

PDZ-1 PDZ-2 EB

NF2
Ezrin
Radixin
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β-catenin
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PHLPP1-2

PDGFR
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PHLPP1

NHERF1

C

NHERF1 PGDF

PTEN

D

NHERF1

Figure 3 NHERF1, moesin, and PTEN localize to ependymal polarized
PDZ domains (1 and 2) and the C-terminal ERM-binding (EB) region with sele
localization of NHERF1 and moesin to microlumens and rosettes. Norm
NHERF1 but not with NF2 (right panels). C-D. Serial sections from an epen
PTEN (arrows) antibodies (C) and NHERF1 microlumens distinct from the P
To investigate the composition of NHERF1 protein
complexes in ependymoma, we screened the intracellular
localization of the NHERF1 ligands moesin, NF2, PTEN,
PDGFRα, EGFR, YAP1, β-catenin and PHLPP2 that have
been functionally involved in primary brain tumors
[11,22-27] (Figure 3A). The apical PM of normal ependyma
and the various ependymoma polarity structures, including
microlumens, rosettes, and canals, consistently showed PM
localization of moesin, similar to NHERF1 (Figure 3B). NF2
somatic mutations are the most frequent individual gene
mutations in spinal cord ependymomas, where they
reach 43% [28]. NF2 IHC in normal ependymal lining
and ependymomas showed only faint or no labeling of apical
in Moesin

NF2

Rα

structures. A. Schematic NHERF1 structure shows the N-terminal
cted ligands. B. Serial sections from an ependymoma case showing
al ependyma shows apical PM labeling with moesin, similar to
dymoma case show the apical PM of canals labeled by NHERF1 and
DGFRα punctate or linear perinuclear staining (D).
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PM (Figure 3B), respectively, suggesting that NF2, unlike
moesin, is not a major ligand of NHERF1 in these polarized
structures.
Among the NHERF1 PDZ-domain ligands, PTEN was de-

tected at the apical PM of ependymal polarity structures
similar to NHERF1 (Figure 3C). The major fraction of PTEN
was cytoplasmic, as previously described [12,29]. Other
NHERF1 ligands, such as PDGFRα, localized in sparse peri-
nuclear dot-like or cap-like structures that appeared
to be distinct from the NHERF1-labeled microlumens
(Figure 3C). This PDGFRα staining, most likely asso-
ciated with the Golgi apparatus, was focal in ependy-
momas and was also present in the NHERF1-negative
anaplastic ependymoma and anaplastic astrocytoma cases
screened. EGFR was not detected in ependymoma. The
NHERF1 PDZ2 domain ligands β-catenin and YAP1 had a
strong and diffuse cytoplasmic localization (Additional file 1:
Figure S4). YAP1 also displayed nuclear staining, most prom-
inent in anaplastic ependymoma cases (not shown). Taken
together, these data indicated that NHERF1 organizes com-
plexes mainly with moesin and PTEN at the apical PM of
polarized structures from ependymal neoplastic cells.

NHERF1 is a diagnostic marker for ependymoma
To determine whether NHERF1 can be used as a diagnostic
marker of ependymal tumors, a multi-institutional effort
Table 1 NHERF1 in ependymal tumors and in other tumors co

Diagnosis Patients Site

No. cases
gender

Mean age
(range)

Ependymoma 341 44.6 (121-74) ST: 51

20M, 14F PF: 8

SC:21

Adult Anaplastic ependymoma 9 33 (23–49) ST: 7

5M, 4F PF: 1

SC: 1

Pediatric Anaplastic
ependymoma

5 4F, 1M 11.8 (6–17) ST: 3

PF: 2

Subependymoma 6 4M, 2F 60.5 (40–68) ST: 5 PF: 1

Mixopapillary ependymoma 5 3F, 2M 45.6 (34–65) SC: 5

Glioblastoma 151 7M, 8F 54.2 (121-76) ST: 13 PF: 2

AT/RT 2 2F 0.75 (0.4-1.1) PF: 2

Medulloblastoma 6 5M, 1F 24 (8–63) PF: 6

Diffuse gliomas4 22 16M, 6F 46.5 (27–78) ST: 22

Pilocytic astroc. 4 3M, 1F 31.5 (18,61) ST:1 PF: 2 S

Schwannoma 5 3M, 2F 46 (29–56) PF: 4 SC: 1

M, male; F, female; ST, supratentorial; PF, posterior fossa; SC, spinal cord.
11pediatric case.
22 tanycytic and 1 giant cell ependymoma.
3All myxopapillary ependymomas had focal NHERF1 membranous staining and pos
4Diffuse gliomas comprise oligodendroglioma WHO grade II (n = 5) and III (n = 1), ol
grade II (n = 1) and III (n = 3).
assembled a total of 113 primary brain tumors consisting of
ependymomas, anaplastic ependymomas, and lower grade
ependymal tumors, as well as miscellaneous other tumors
considered in the differential diagnosis (Table 1). Although
we focused our attention on the diagnosis of adult cases,
smaller subsets of pediatric cases were also included
for comparison. Patient demographics, as well as the
localization of tumors, are presented in Table 1.
All 34 ependymoma cases in our series showed

NHERF1 expression in microlumens, either in a diffuse
pattern (31 of 34 cases), or more rarely, in a focal distri-
bution (3 of 34 cases). The diffuse NHERF1 microlumen
pattern was also present in 35.3% and 44.1% of cases with
negative or lower epithelial membrane antigen (EMA)
staining, respectively (Figure 4A and Additional file 1:
Figure S5), indicating a higher sensitivity of NHERF1
for microlumen detection in ependymoma. The density
of microlumens was quantified in tumors with diffuse
NHERF1 expression and showed approximately 1
microlumen/2 nuclei (Figure 4B and Additional file 1:
Figure S6) in the majority of the tumors. A sparse diffuse
NHERF1 expression was also observed in some ependy-
moma cases (as in Figure 4A), with microlumen density
similar to that observed in subependymoma cases. We also
quantified the presence of ring-like structures and
found 47% and 36.3% of ependymomas and anaplastic
nsidered in the differential diagnosis

NHERF1 microlumen positivity

Diffuse Focal Total/Site Total

5 (100%) 5 (100%) 34 (100%)

8 (100%) 8 (100%)

18 (85%) 32 (15%) 21 (100%)

2 (28%) 2 (28%) 4 (57%) 6 (67%)

1 (100%) 0 1 (100%)

0 1 (100%) 1 (100%)

2 (67%) 1 (33%) 3 (100%) 5 (100%)

2 (100%) 0 2 (100%)

5 (100%) 1 (100%) 0 0 5 (100%) 1 (100%) 6 (100%)

0 3 (60%) 3 (60%) 33 (60%)
1 0 0 3 (23%) 0 3 (23%) 0 3 (20%)

0 0 0 0%

0 0 0 0%

0 0 0 0%

C: 1 0 0 0 0%

0 0 0 0%

itive canals.
igoastrocytoma WHO grade II (n = 8) and III (n = 4), and astrocytoma WHO
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Figure 4 NHERF1 is a marker for ependymoma. A. Comparative IHC with NHERF1 and EMA antibodies on serial sections from an
ependymoma case shows microlumen detection only by NHERF1. The EMA versus NHERF1 staining was similarly performed in all the
ependymomas (E) and in the NHERF1-positive anaplastic ependymomas (AE), and the quantification is shown in the graph. B. Quantification of
microlumen density in ependymal tumors. E, ependymoma; SE, subependymoma. C. Quantification of the ring-like structures labeled by NHERF in
ependymoma (E) and anaplastic ependymoma (AE) tumors. D. IHC with NHERF1 antibody in ependymoma variants shows microlumen labeling.
E. Extent of NHERF1 microlumen labeling in ependymoma (E), pediatric anaplastic ependymoma (AEped) and adult anaplastic ependymoma
(AEadult) illustrates significant NHERF1 loss in the latter. F. NHERF1 IHC of an anaplastic ependymoma case containing areas of classical ependymoma
morphology (left) and areas of anaplasia (right) shows almost complete loss of NHERF1-labeled microlumens from the anaplastic component.
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ependymomas, respectively, to contain these specific
structures (Figure 4C). Notably, these structures were
detected in only 31% of ependymomas by EMA IHC
in a previous study [21]. Focal NHERF1 labeling was
observed in two cases of the tanycytic ependymoma sub-
type, although several other tanycytic ependymomas
showed diffuse NHERF1 pattern, and in one case of the
giant cell ependymoma subtype (Figure 4D). Clear cell
ependymomas showed diffuse NHERF1 microlumen
labeling (Figure 4D).
WHO grade I subependymomas showed sparse diffuse

NHERF1 microlumen labeling in 100% of the cases,
with a density of 1 microlumen/4 nuclei (Figure 4B and
Additional file 1: Figure S7). Although microlumen
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density was significantly lower than in ependymoma, the
diffuse presence of microlumens is consistent with an
ependymal origin of subependymomas.
Myxopapillary ependymomas are WHO grade I epen-

dymal tumors with good prognosis arising with highest
frequency in the cauda equina. NHERF1 labeling showed
a distinctive pattern consisting mainly of canals,
membranous staining, and focal areas of microlumens
(Additional file 1: Figure S8 and Table 1).
Our analysis of WHO grade III anaplastic ependymo-

mas showed a greater degree of NHERF1 expression in
pediatric cases in comparison to adult tumors. NHERF1
microlumens were seen in 100% of pediatric cases,
primarily with a diffuse pattern, while adult cases showed
an overall 67% NHERF1 microlumen positivity with
reactivity equally divided between diffuse and focal
(Table 1, Figure 4E). In anaplastic tumors with foci of
classical ependymoma morphology, an abrupt NHERF1
expression loss was noted in the anaplastic component of
the tumor (Figure 4F and Additional file 1: Figure S9),
suggesting loss of differentiation in these advanced
tumors. Interestingly, EMA perinuclear reactivity was
maintained in the anaplastic areas (Figure 4A graph
and Additional file 1: Figure S9), reminiscent of the
upregulation of EMA, a transmembrane glycoprotein
also known as Mucin 1, in a series of epithelial cancers.
Even if this reactivity corresponds most likely to Golgi
rather than to microlumen staining, it is sometimes difficult
to distinguish between these patterns. The four cases in
which EMA was retained in anaplastic areas but NHERF1
was negative were scored as higher EMA (Figure 4A graph
and Additional file 1: Figure S9). EMA staining was absent
in four of the NHERF1-positive cases, two of which had
only focal NHERF1 microlumen labeling (Figure 4A graph).
The specificity of NHERF1 microlumen pattern as

diganostic marker for ependymal tumors was assessed by
screening 54 tumors of different origin that are typically
considered in the differential diagnosis (Table 1). For poster-
ior fossa pediatric tumors, medulloblastomas consistently
lacked NHERF1 polarity structures and the two cases of
atypical teratoid/rhabdoid tumors screened were negative as
well. For adult posterior fossa and spinal cord tumors,
schwannomas were negative for NHERF1 polarity struc-
tures. Similarly, NHERF1 polarity structures were absent in
glial tumors such as pilocytic astrocytoma, oligodendrogli-
oma, mixed oligoastrocytoma and anaplastic astrocytoma.
Most glioblastoma cases were negative for NHERF1 micro-
lumen labeling, however, 20% showed focal microlumen for-
mation (Additional file 1: Figure S10). No ring-like or other
polarity structures were labeled by NHERF1 in these cases.

Discussion
The pathologic diagnosis of ependymoma is based on
H&E histologic examination and confirmation of the
neoplastic origin by glial fibrillary acidic protein IHC.
True ependymal rosettes and canals are obvious histologic
features of ependymoma that occur in a minority of cases.
Microlumens, the putative precursor of true rosettes, are
more prevalent and are detected traditionally by EM. As
EM is expensive, time-consuming and restricted to only
few centers, EMA IHC is used routinely as an alternative
to EM for microlumen detection. Unfortunately, EMA is
not a reliable diagnostic tool due to its low detection
sensitivity, as in our series, and to its reported decreased
specificity for ependymoma [21]. We show here that
NHERF1 IHC has a high sensitivity and specificity for
microlumen detection in ependymal tumors, and therefore
can be used reliably as a diagnostic marker in these tumors.
We have also identified moesin in ependymal polarity
structures, however, the low affinity of the moesin antibody
and its labeling of blood vessels indicate that NHERF1 is a
superior diagnostic marker. The lower grade ependymal
tumors, including subependymoma and ependymoma,
consistently showed NHERF1 microlumen labeling, usually
with diffuse pattern. Labeling in anaplastic varied by age:
all pediatric cases were NHERF1-positive, generally with
diffuse reactivity, while only two-thirds of adult cases were
NHERF1-positive, either diffusely or focally. The presence
of areas of classical ependymoma morphology with
abundant NHERF1 staining in otherwise anaplastic tumors
supports the diagnosis in these advanced tumors. To our
knowledge, NHERF1 IHC represents the most sensitive
method for microlumen detection in ependymoma.
Due to the lack of effective chemotherapy regimens,

recent efforts have been directed towards understanding
the pathogenesis of ependymoma. Extensive mRNA
microarray and CGH analyses showed that ependymomas
are heterogenous tumors that, depending on their
location –spinal, supratentorial, or in the posterior
fossa - show different molecular signatures [30,31].
Interestingly, NHERF1, a marker of apical PM in normal
ependyma, consistently highlighted the microlumens of
ependymoma regardless of location, attesting to a com-
mon origin for these tumors. The presence of identical
NHERF1-labeled microlumens in clusters of normal epen-
dymal cells that do not line the ventricular system raises
the possibility of tumor initiation from these clusters. It is
thus foreseeable that the different molecular signatures
result from the proliferative response of similar ependymal
precursor cells to location-specific environmental cues. In
this respect, it is noteworthy that defects of ciliogenesis
characterize both a subset of posterior fossa ependymomas
in children [31] and a series of developmental posterior
fossa deficits [32,33], pointing to common molecular
pathways for both posterior fossa abnormalities.
Apico-basal cell polarity is a morphological characteris-

tic disrupted early in the development of epithelial
malignancies [34]. We have previously shown that NHERF1
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deficiency in mice induces structural abnormalities of the
intestinal apical PM [16] that translate into defective
epithelial morphogenesis with loss of apico-basal polarity
and epithelial-mesenchymal transition in colorectal cancer
cells [9,12]. In this study, the presence of hydrocephalus
and of ependymal apical PM defects in NHERF1-deficient
mice translated into the characterization of NHERF1-
containing precursor polarized structures in ependymoma.
The sensitive detection of microlumens by NHERF1
antibody revealed loss of these structures in anaplastic foci
present in some WHO grade II ependymomas and a
drastic reduction in adult anaplastic ependymoma, most
likely due to lack of differentiation of the constituent
anaplastic cells. Beside its structural role, NHERF1 has
been implicated in oncogenic signaling, especially in
the phopshoinositide 3-OH kinase (PI3K)-Akt and
Wnt-β-catenin pathways [10,11,27,35]. In glioblastoma,
NHERF1 loss from the PM has been shown to displace
PTEN from the PM and consequently activate PI3K-Akt
pathaway [14]. Similarly, the loss of NHERF1 and associated
proteins from the PM of ependymal polarity structures in
anaplastic ependymoma is prone to result in PTEN
cytoplasmic displacement and activation of the PI3K-Akt
pathway. Thus, in an analogous manner to other cancers
[12,14,36], the regulation of morphogenesis and cell
growth by NHERF1 subcellular localization emerges also
in ependymal oncogenesis, with direct translation to the
diagnosis of ependymal tumors.
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