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Abstract

Background: Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder. The neuropathology is
characterized by intraneuronal protein aggregates of α-synuclein and progressive degeneration of dopaminergic
neurons within the substantia nigra. Previous studies have shown that extracellular α-synuclein aggregates can activate
microglial cells, induce inflammation and contribute to the neurodegenerative process in PD. However, the signaling
pathways involved in α-synuclein-mediated microglia activation are poorly understood. Galectin-3 is a member of a
carbohydrate-binding protein family involved in cell activation and inflammation. Therefore, we investigated whether
galectin-3 is involved in the microglia activation triggered by α-synuclein.
Results: We cultured microglial (BV2) cells and induced cell activation by addition of exogenous α-synuclein monomers
or aggregates to the cell culture medium. This treatment induced a significant increase in the levels of proinflammatory
mediators including the inducible Nitric Oxide Synthase (iNOS), interleukin 1 Beta (IL-1β) and Interleukin-12 (IL-12). We
then reduced the levels of galectin-3 expression using siRNA or pharmacologically targeting galectin-3 activity using
bis-(3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-β-D-galactopyranosyl)-sulfane. Both approaches led to a significant
reduction in the observed inflammatory response induced by α-synuclein. We confirmed these findings using primary
microglial cells obtained from wild-type and galectin-3 null mutant mice. Finally, we performed injections of
α-synuclein in the olfactory bulb of wild type mice and observed that some of the α-synuclein was taken up by
activated microglia that were immunopositive for galectin-3.

Conclusions: We show that α-synuclein aggregates induce microglial activation and demonstrate for the first time that
galectin-3 plays a significant role in microglia activation induced by α-synuclein. These results suggest that genetic
down-regulation or pharmacological inhibition of galectin-3 might constitute a novel therapeutic target in PD and
other synucleinopathies.
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Introduction
Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder clinically typified by bradykinesia, rigidity,
postural instability and tremor, as well as a wide range
of non-motor symptoms including constipation, bladder
dysfunction and cognitive impairment [1]. Pathologically,
PD is characterized by the formation of α-synuclein ag-
gregates commonly known as Lewy bodies and Lewy
neurites [2], glial activation, brain inflammation and
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progressive dopaminergic cell degeneration [3]. While
the majority of cases of PD appear to be sporadic, gen-
etic mutations or multiplications of the α-synuclein gene
(SNCA) lead to the onset of familial PD [4,5].
α-Synuclein is a soluble protein composed of 140

amino acids found predominantly in presynaptic termi-
nals where it is thought to play a role in development
and plasticity [6-9]. In addition, α-synuclein is highly
expressed in immune cells, including T-cells, B-cells,
natural killer cells and monocytes [10]. Recent studies
suggest that α-synuclein can transfer from one cell to
another and promote the self-aggregation and thus pos-
sibly contributing to disease propagation [7,11-14].
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While microglial activation has been suggested to play
major role in the neurodegenerative process in PD
[15,16], the signaling pathways that mediate this process
are still poorly understood. For instance, Codolo and
colleagues have recently demonstrated that α-synuclein
monomers and fibrils induce Interleukin 1β (IL-1β) re-
lease from monocytes [17] via the Toll-like receptor 2
(TLR2). Moreover, Kim and colleagues have suggested
that oligomeric forms of α-synuclein specifically activate
TLR2 [18]. However, the TLR4 has also been implicated in
α-synuclein-induced inflammation [19]. Moreover, it has
been shown that the effects on cell activation and the sub-
sequent inflammatory response can vary with the source/
species of α-synuclein (mammalian cell-derived vs recom-
binant) and/or the type of protein used (wild type or mu-
tant) [20]. Moreover, the molecular state of the protein
used (monomeric, oligomeric or fibrillar) can also play a
role in the magnitude of the inflammatory response [18].
Indeed, depending on the microenvironment/insult, acti-
vated microglia cells can adopt one of two well-
characterized profiles, namely a classical (pro-inflamma-
tory, M1) or an alternative (anti-inflammatory, M2) pro-
file [21,22]. In these two different states, activated
microglia release different factors and express different
surface proteins that allow them to sense the microenvir-
onment and coordinate the inflammatory response. In
the pro-inflammatory (M1) profile, microglial cells release
different pro-inflammatory molecules, e.g. Tumor Necro-
sis Factor-α (TNF-α), IL-1β, Interleukin-12 (IL-12),
Interferon-γ (IFN-γ) or Nitric oxide (NO), which decrease
neuronal survival [23,24]. The alternative profile, however,
is characterized by release of anti-inflammatory factors (e.
g. Interleukin-4 (IL-4), Interleukin-13 (IL-13) or Trans-
forming Growth factor-β (TGF-β)) which reduce micro-
glial activation [25]. While different pathways have been
suggested to be involved in α-synuclein-mediated activa-
tion including the ERK 1/2, p38 MAPK, inflammasome or
the NF-κβ pathway [17,26], the involvement of galectin-3
and microglial activation remains to be elucidated.
Galectin-3, which is identical to the commonly used
macrophage marker Mac-2, is an inflammatory mediator
known to be highly expressed in some activated inflamma-
tory cells, including microglia. Galectin-3 levels are in-
creased in several conditions including encephalomyelitis,
traumatic brain injury, experimental allergic encephalitis
(EAE) and ischemic brain injury [27,28]. However, a pos-
sible role for α-synuclein induced galectin-3 activation
during the inflammatory process in PD has yet to be
elucidated.
Galectin-3 is a member of the β-galactoside-binding

lectin family defined by their typical carbohydrate recog-
nition domains (CRDs) [29,30]. Galectin-3 plays a role in
different biological activities, including cell adhesion, pro-
liferation, clearance, apoptosis, cell activation, cell
migration, phagocytosis and inflammatory regulation
[27,31-37]. Galectin-3 is found both intra- (in cytoplasm
and nucleus) and extracellularly in different cell types and
is suggested to play both pro-inflammatory and anti-
inflammatory roles which depend on the cell type and in-
sult provided [31,36,38,39]. In this study, we investigated
whether galectin-3 is involved in microglial activation in-
duced by α-synuclein proteins. Therefore, we exposed
BV2 and primary microglia cells to monomeric and aggre-
gated forms of recombinant α-synuclein and specifically
studied the inflammatory response. We then determined
the effects of microglial activation following down-
regulation of galectin-3 using a specific pharmacological
inhibitor or genetic down regulation using siRNA. We
then monitored the effects of different forms of α-
synuclein on galectin-3-null mice primary microglial cul-
tures. Finally, we determined whether α-synuclein injec-
tions into the olfactory bulb of wild type mice result in
microglia activation and galectin-3 protein expression.

Materials and methods
Animals
For primary microglial cultures, galectin-3 null mice
[40] with a pure C57BL/6 background were obtained
from Dr. K. Sävman from Gothenburg University. For
intracerebral injections, 3-month-old female mice C57BL/
6J were purchased from Charles River Laboratories and
housed them under a 12 h light/12 h dark cycle with ac-
cess to food and water and libitum at Lund university
(Sweden). All procedures were carried in accordance with
the international guidelines and were approved by the
Malmö-Lund Ethical Committee for Animal Research in
Sweden (M479-12).

Genotyping
The genotype of gal3−/− and gal3+/+ mice was deter-
mined by an integrated extraction and amplification kit
(Extract-N-Amp™, Sigma-Aldrich). The PCR consisted of
94°C for 5 min, then 40 cycles with denaturation at 94°C
for 45 sec, annealing at 55°C for 30 sec, and elongation
at 72°C for 1.5 min. The primers (CyberGene, Solna,
Sweden) used were as follows: galectin-3 common 5-
CAC GAA CGT CTT TTG CTC TCT GG-3’), gal3−/−
5-GCT TTT CTG GAT TCA TCG ACT GTG G-3’ (sin-
gle band of 384 bp) and gal3+/+ 5-TGA AAT ACT TAC
CGA AAA GCT GTC TGC-3’ (single band of 300 bp)
[41]. We separated the PCR products by gel electrophor-
esis labeled with ethidium bromide and visualized in a
CCD camera (SONY, Tokyo, Japan).

Cell cultures and treatment
We cultured murine microglial cells (BV2 cell line) in
Dulbecco’s modified Eagle’s medium (DMEM) contain-
ing 10% Fetal Bovine Serum (Invitrogen) with 100 U/ml
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Penicillin and 100 U/ml Streptomycin (Invitrogen) in 5%
CO2 atmosphere at 37°C in T75 flasks (Nunc, Thermo
Scientific) and passaged at confluency. BV2 cells were
seeded at a concentration of 2×105 cells/well in 24 wells
plate (Nunc, Thermo Scientific) then treated with α-
synuclein monomers or aggregates at different concen-
trations (5, 10 and 20 μM) or LPS (Sigma-Aldrich) at
1 μg/ml. All treatments were conducted for 12 h.

Primary cell cultures
Primary microglia cultures from wild-type (WT)
(C57BL/6) or galectin-3 knockout (KO) mice, cells were
prepared from postnatal day 1–3 and cultured as previ-
ously described [42]. Briefly, the cerebral cortex were dis-
sociated in ice cold Hank’s Balance Salt Solution without
bivalent ions (HBSS, Invitrogen), Trypsin (0.1%) (Invitro-
gen) and DNase (0.05%) (Sigma-Aldrich). The cells were
then plated in T75 flask with 10 ml/flask of Dulbecco’s
modified Eagle’s medium (DMEM, Invitrogen) containing
10% Fetal Bovine Serum (Invitrogen) with 100 U/ml Peni-
cillin and 100 U/ml Streptomycin (Invitrogen) in 5% CO2

atmosphere at 37°C. After 14 days, cells were harvested in
the medium by smacking the flask 10–20 times and plated
in 96 wells plates at a density of 2×104 cells/well. The pri-
mary cultures were then treated with α-synuclein aggre-
gates at different concentrations (50 nM, 200 nM, 1, 5,
and 20 μM).

α-synuclein aggregate generation
Briefly, human α-synuclein was purified using the heat
treatment, ion exchange, and gel filtration chromatog-
raphy as previously described [43]. α-synuclein monomers
were placed on an orbital shaker at 250 rpm, shaking the
monomers for 5 days at 37°C in sterile PBS. After 5 days
of incubation, the protein aggregates were sonicated using
a Branson Sonifier 250 (All-Spec, Willington, US) with the
following conditions: 3/9 output and 30/100 Duty Cycle.
We tested the composition of our aggregates and mono-
mers using Western Blot analysis and transmission elec-
tron microscopy (TEM) (FEI, Einhofen Holland). We
performed negative stain of monomeric and sonicated ag-
gregated forms of α-synuclein by using 2% uranyl acetate
in water. The concentration of endotoxin was measured in
our protein preparations using the Limulus amebocyte
lysate assay (Chromogenic Endotoxin Quantification Kit,
Thermo Scientific, US). We detected very low levels of
endotoxin (0.14 ng of LPS/ml) that was unable to influ-
ence on the microglial activation (data not shown).

Galectin-3 inhibitor
We used a small inhibitory molecule for galectin-3 ac-
tivity, bis-(3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-
β-D-galactopyranosyl)-sulfane (Kd = 14 nM) [44-46] as
pre-treatment 30 minutes (5, 25, 50 and 100 μM) before cells
were treated with α-synuclein (monomers or aggregates)
or for 12 h along with α-synuclein (monomers or aggre-
gates) at 100 μM.

Transfection conditions
Transfection of BV2 cells was carried out using Lipofecta-
mine 2000 following the manufacturer’s recommendation
(Life Technologies). Non-targeting control and galectin-3
siRNAs were obtained from Dharmacon. (SMART pool)
siRNA sequence used: siLGal3S3(1) J-041097-09 GAGAG
AUACCCAUCGCUUU, siLGal3S3(2) J-041097-10 ACUU
CAAGGUUGCGGUCAA, siLGal3S3(3) J-041097-11 AC
AGUGAAACCCAACGCAA, siLGal3S3(4) J-041097-12
GGAUGAAGAACCUCCGGGA.

Western blot analysis
Briefly, proteins were loaded on 4-20% Mini-Protean
TGX Precast Gels (Bio-Rad) then transferred to Nitro-
cellulose membranes (Bio-Rad) using Trans-Blot Turbo
System (Bio-Rad). Membranes were then blocked with
10% Casein (Sigma-Aldrich) diluted in PBS (tablets,
Sigma-Aldrich). After blocking, we incubated membranes,
with primary antibodies at 4°C over night. We then incu-
bated membranes with peroxidase secondary antibody
(Vector Labs) and blots were developed using Clarity
Western ECL Substrate (Bio-Rad) and protein levels were
normalized to actin.

Antibodies
Antibodies used for this study; anti-rabbit iNOS primary
Antibody (1:5000, Santa Cruz), Anti-rat Galectin-3 Anti-
body (1:3000, M38 clone from Hakon Leffler’s lab),
Anti-mouse Actin antibody 1:8000 (Sigma-Aldrich), Anti-
human Synuclein antibody 1:3000 (Life Technologies).

Cytokines analysis
We measured the cytokine levels from BV2 conditioned
medium and primary microglial cells after 12 h treat-
ment. We used the ultrasensitive Th1/Th2 cytokine
multiplex plate to measure IFN-γ, IL-1β, IL-2, IL-4, IL-5,
IL-8, IL-10, IL-12, IL-6 and TNF-α (Meso Scale Discov-
ery, Rockville, USA) according to the manufacturer’s rec-
ommendations. The plates were analyzed using with the
plate reader SECTOR Imager 6000 (Meso Scale Discovery,
Rockville, USA). The conditioned medium was snap fro-
zen on dry ice and kept in −80°C freezer prior analysis.

Viability assay
Cell viability was performed by measuring mitochondrial
activity (mitochondrial dehydrogenase) in living cells
using XTT (2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl]-2H-
tetrazolium-5-carboxyanilide salt) (Sigma-Aldrich). The
assay was performed following manufacturer’s protocol on
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a 96-well plate (Biochrom Asys Expert 96 micro plate
reader, Cambridge, UK).

Olfactory bulb recombinant α-synuclein injections
We analyzed brain sections from mice injected into the
olfactory bulb with different α-synuclein species (mono-
meric, oligomeric and fibrillar α-synuclein) as previously
described [47]. Briefly, α-synuclein was produced in
Escherichia coli and purified and filtered as described
previously [47,48]. Oligomers were obtained by incubat-
ing soluble α-synuclein at 4 degrees for 7 days without
shaking, in 50 mM Tris–HCl, and then separated from
monomers by size exclusion chromatography. Fibrils
were obtained from incubation of monomers under con-
tinuous shaking at 37°C, and samples were assessed by
electron microscopy. α-synuclein was then tagged with
ATTO-550 as described previously [47]. We injected α-
synuclein monomers, oligomer and fibrils (1 mg/mL; 0.8
uL) stereotactically into the olfactory bulb of mice (coor-
dinates AP: +5.4 mm, L: −0.75 mm, DV: −1 mm relative
to bregma and dural surface). After injection, 12 h and
72 h, we perfused the mice transcardially with saline so-
lution, followed by 4% paraformaldehyde (PFA) in phos-
phate buffer. We dissected the brains and post-fixed
them for 2 h in PFA 4% followed by saturation in 30%
sucrose solution. We then cut brains into 30 μm free-
floating coronal sections, as shown previously [47].

Immunofluorescence on mouse brain tissue
We stained free-floating coronal sections of the olfactory
bulb from injected mice with primary antibodies: anti-rat
Galectin-3 (1:300) and anti-rabbit Iba-1 (1:500, Wako/
Nordic labs) with appropriate secondary antibodies Alexa-
488 anti-rat, Alexa-647 anti-rabbit (raised in goat, 1:400,
Invitrogen). We then analyzed these sections with a con-
focal laser microscope ZEISS LSM 510 (Switzerland),
equipped with Ar and HeNe Lasers.

Phagocytic Assay
We measured the microglial phagocytosis using a phago-
cytosis assay kit (Cayman Chem, USA) according to the
protocol provided by the manufacturer. We plated 5×
104 cells/well in 96 well plates for 12 h before treating
the cells with α-synuclein (20 μM) for additional 12 h.
Thereafter, IgG-FITC beads were added with or without
galectin-3 inhibitor for 12 h and the phagocytic ability
was then analyzed (FluoStar Optima, BMG, LabTech,
Sweden).

Statistical analysis
The differences between experimental groups were ana-
lyzed (unless otherwise stated) with one-way ANOVA
with Tukey’s post hoc test, two-way ANOVA Dunnett’s
post hoc test or t-test as indicated in the figure legends.
P < 0.05 was considered as statistically significant. We
used the statistical software GraphPad PRISM 6.0 (San
Diego, CA, USA). Data is represented as mean ± S.E.M.
A minimum of 3 different independent experiments
were performed for all the in vitro experiments.

Results
Exogenous α-synuclein proteins promote microglial
activation
To assess whether α-synuclein can activate microglial cells
in vitro, we first generated recombinant α-synuclein and
induced protein aggregates as previously reported [43].
We then characterized the α-synuclein species by Western
blot and electron microscopy analysis (Additional file 1:
Figure S1A-C). Our data demonstrate that α-synuclein in
the aggregated state is composed of a mixture of mono-
mers, oligomers and to a lesser extent, fibrillar α-synuclein
species (Additional file 1: Figure S1D). We then assessed
the inflammatory response by exposing microglial cells to
different concentrations of monomeric or aggregated
forms of α-synuclein (5, 10 and 20 μM) for 12 h, the time
period at which the temporal iNOS expression response
following LPS treatment is the highest [49]. Using these
conditions, we identified a concentration-dependent up-
regulation of iNOS expression following both mono-
meric and aggregated forms of α-synuclein (Figure 1A
and B, respectively). At the highest concentration used
however (20 μM), α-synuclein aggregates induced a 3-
fold higher iNOS expression compared to monomeric α-
synuclein (Figure 1A and B). These results indicate that
our α-synuclein proteins successfully induce microglial
activation [17].

Pro-inflammatory cytokine levels increase after
α-synuclein treatment
Following α-synuclein treatment, we observed a concen-
tration dependent up-regulation of cytokine secretion
that includes TNF-α, IL-2 and IL-12 (Figure 2A-C). These
results suggest that microglial activation induced by α-
synuclein aggregates promote a pro-inflammatory cascade
similar to that observed in PD [24,50].

Inhibition of galectin-3 prevents iNOS expression and
reduce pro-inflammatory cytokines release in BV2
microglial cells
First, we assessed the effect of pharmacological in-
hibition of galectin-3 prior to α-synuclein-induced
microglial activation. To this end, microglial cells were
pre-treated with a galectin-3 inhibitor for 30 minutes (5,
25, 50 and 100 μM) then washed and exposed to mono-
meric or α-synuclein aggregates (20 μM) then we
assessed the levels of iNOS expression. After pharmaco-
logical inhibition of galectin-3, we observed a significant
inhibition of α-synuclein-induced microglial activation (as
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shown by the lack of iNOS expression) in a concentration-
dependent manner with more than 50% iNOS down-
regulation following 50 and 100 μM treatment, a result
that was specific to α-synuclein aggregates (Figure 1C
and D). Next, we assessed the effect of pharmacological
inhibition of galectin-3 for 12 h along with the α-synuclein
aggregates. Pharmacological inhibition of galectin-3 for
12 h resulted in a higher inhibition (85%) of α-synuclein-
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induced microglial activation (iNOS expression, Figure 3A).
We then measured the cytokine levels in the medium after
galectin-3 inhibition and α-synuclein treatment for 12 h
and observe a clear reduction in the pro-inflammatory cy-
tokines IL-12, IL-6 and TNF-α (Figure 3B).

Galectin-3 inhibition does not impair cell viability
As shown in figure S2, inhibition of galectin-3 does not
affect cell viability when cells are treated alone or in
combination with α-synuclein aggregates for 12 h. Inter-
estingly, α-synuclein treatment of microglial cells in-
creased mitochondrial activity with or without the
inhibitor, suggesting an increased metabolic need that
may be triggered by α-synuclein aggregates.

Galectin-3 knockdown in BV2 microglial cells
down-regulates iNOS expression and pro-inflammatory
cytokine release
To further test the role of galectin-3 in microglial activa-
tion, we genetically down-regulated galectin-3 expres-
sion in BV2 cells using small interfering RNA (siRNA)
(Figure 4A). We then treated the cells with α-synuclein
aggregates and analyzed the iNOS expression levels using
Western blot analysis (Figure 3B). As expected, down-
regulation of galectin-3 significantly reduced iNOS protein
expression levels (Figure 4B). Next, we measured the cyto-
kine levels in BV2 cells genetically down regulated with
small interfering RNA (siRNA) targeting galectin-3 and
treated with α-synuclein aggregates. Genetic down-
regulation of galactin-3 also showed a reduction in TNF-α
and IL-10 compared to cells treated with control siRNA
(Figure 4C). Taken together these results demonstrate that
down-regulation of galectin-3 reduces α-synuclein in-
duced microglial activation and significantly lowers iNOS
protein expression and cytokine up-regulation.

Pharmacological intervention of galectin-3 reduces the
microglial phagocytic activity
To test the implications on the phagocytic ability of
microglial cells in our α-synuclein activation model, we
treated BV2 cells with the galectin-3 inhibitor for either
30 minutes or 12h together with α-synuclein aggregates.
As expected, activated microglial cells show a higher
phagocytic activity whereas no differences were observed
in the phagocytic ability using the inhibitor as a pre-
treatment (data not shown). As shown in Figure 5, the



TNF-

C
yt

ok
in

e 
in

 m
ed

iu
m

 (
pg

/m
l)

Con
tro

l

Gal-
3 I

nh 10
0 µ

M
 

0

10000

20000

30000 ****

IL-6 

C
yt

ok
in

e 
in

 m
ed

iu
m

 (
pg

/m
l)

0

500

1000

1500

*

IL-1

C
yt

ok
in

e 
in

 m
ed

iu
m

 (
pg

/m
l)

0

2

4

6

8

10 n.s.

IL-12 

C
yt

ok
in

e 
in

 m
ed

iu
m

 (
pg

/m
l)

Con
tro

l

Gal-
3 I

nh 10
0 µ

M
 

0

5

10

15

20

-synuclein aggregates 20 µM -synuclein aggregates 20 µM 

-synuclein aggregates 20 µM 

-synuclein aggregates 20 µM 

**

IL-10 

C
yt

ok
in

e 
in

 m
ed

iu
m

 (
pg

/m
l)

Con
tro

l

Gal-
3 I

nh 10
0 µ

M
 

0

20

40

60

80

-synuclein aggregates 20 µM 

Con
tro

l

Gal-
3 I

nh 10
0 µ

M
 

n.s.

IFN-
C

yt
ok

in
e 

in
 m

ed
iu

m
 (

pg
/m

l)

Con
tro

l

Gal-
3 I

nh 10
0 µ

M
 

0.0

0.5

1.0

1.5

2.0

-synuclein aggregates 20 µM 

Con
tro

l

Gal-
3 I

nh 10
0 µ

M
 

n.s.

B

iNOS Expression

iN
O

S-
F

ol
ds

 t
o 

A
ct

in
 (

%
)

Con
tro

l

Gal-
3 I

nh
0

50

100

150

**

-synuclein aggregates 20 µM

Actin (37 kD)

iNOS (130 kD)

A

Figure 3 Inhibition of microglial activation by galectin-3 inhibitor. To determine the role of galectin-3 we used a treatment, incubating the
galectin-3 inhibitor along with α-synuclein aggregates for 12 h at 20 μM. We determine by western blot the iNOS expression induced by
α-synuclein aggregates. iNOS expression was inhibited by more than 80% using 100 μM of the inhibitor (A). The cytokines levels were measure
and TNF-α, IL-12 and IL-6 were down regulated when using the inhibitor for 12 along with α-synuclein aggregates (B). We use the highest iNOS
response in each experiment as an internal control to evaluate the response to the other concentrations. Western blot analysis displays iNOS and
β-actin protein levels. One-way ANOVA, *P < 0,05, **P < 0.01,****P < 0,0001) n = 3, mean ± S.E.M.

Boza-Serrano et al. Acta Neuropathologica Communications 2014, 2:156 Page 7 of 14
http://www.actaneurocomms.org/content/2/1/156
phagocytic ability of microglia was reduced to control
levels during the experiment when cells are treated with
the inhibitor for 12 h. As expected, treating the cells
with recombinant galectin-3 proteins up-regulates
microglial phagocytic activity to levels similar to cells
treated with α-synuclein aggregates (Figure 5). Import-
antly, we did not detect any synergic effect when cells
were treated with galectin-3 and α-synuclein aggregates.
These results suggest that induction of phagocytosis is
an important aspect of microglial activation by α-
synuclein aggregates and that galectin-3 plays an
important role in cell activation and phagocytosis. These
results are in in line with previous studies showing that
phagocytosis is a central part in α-synuclein induced in-
flammation [17].

Microglia from galectin-3 knockout mice display iNOS
down-regulation following α-synuclein activation
Next we examined the iNOS levels in primary microglial
cells, we analyzed the conditioned medium after cells
been treated with α-synuclein aggregates for 12h. In
line with our BV2 iNOS cytokine data (Figure 1), we
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identified a robust up-regulation iNOS following α-sy-
nuclein challenge (Figure 6A). Importantly, galectin-3
knockout microglial cells showed a complete abrogation
of iNOS protein expression (Figure 6B). This data clearly
demonstrated that iNOS regulation maybe dependent on
galectin-3.
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Figure 5 BV2 microglial cells treated with the galectin-3 inhibitor
show reduced phagocytic ability. Phagocytic ability of microglia was
robustly increased after 12 h of treatment with α-synuclein aggregates
(20 μM). Adding galectin-3 inhibitor (100 μM) to microglial cultures
treated with α-synuclein aggregates for the same 12 h time period
robustly reduced the phagocytosis down to baseline levels. Adding
galectin-3 protein we could recover the phagocytic ability even when
using the inhibitor at the same time. Phagocytosis was measured by
the cellular uptake up of fluorescent beads. One-way ANOVA, *P < 0.05;
**P < 0.01, n = 3, mean ± S.E.M.
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Microglia from galectin-3 knockout mice show a
down-regulation of pro-inflammatory cytokines following
α-synuclein activation
To examine the cytokine levels in primary microglial
cells, we analyzed the conditioned medium after cells
were treated with α-synuclein aggregates. In line with
our BV2 cytokine data (Figure 2), we identified a robust
up-regulation of pro-inflammatory cytokines that in-
cluded IL-12 and IL-1β and IFN-γ as well as the anti-
inflammatory cytokine IL-4 (Figure 6C). Importantly,
galectin-3 KO microglial cells showed a significant re-
duction in IL-1β (55%) and IL-12 (75%) cytokine release
when compared to wild type microglia (Figure 6C).
However, no differences were observed in IFN-γ or the
anti-inflammatory cytokine IL-4. Taken together, our re-
sults indicate that galectin-3 is involved in the pro-
inflammatory activation of specific inflammatory pathways
that involve the IL-1β and IL-12 cytokines.

Olfactory bulb injections of recombinant α-synuclein
To confirm the expression of galectin-3 in microglial cells
following activation with α-synuclein in vivo, we injected
α-synuclein tagged with ATTO-550 in a monomeric, olig-
omeric or fibrillar state within the olfactory bulb of wild
type mice. We then performed immunofluorescence ana-
lysis and identified activated microglial cells (Iba-1) that
were positive for galectin-3 following α-synuclein injec-
tions (Figure 7). While microglial cells were able to take
up all three different forms of α-synuclein injected,
differences in the molecular species taken up by microglia
cells were shown to vary with time. Indeed, at 12 h
post injection, we identified activated microglial cells
containing monomers and oligomers with up-regulated
galectin-3 expression (Figure 7A). In contrast, limited
galectin-3 expression was observed upon fibrillar α-
synuclein (Figure 7A). These results may be due to the
limited uptake of the fibrillar forms of α-synuclein
[47], or the time required to phagocyte the fibrillar α-
synuclein species. Interestingly, at 72 h post injection,
monomeric α-synuclein did not induce galectin-3 ex-
pression, whereas oligomers and fibrils showed a clear
galectin-3 up-regulation (Figure 7B). Taken together, our
data demonstrate that microglial cells take up α-synuclein
in vivo and display a microglia phenotype that is galectin-
3 positive.

Discussion
We demonstrate for the first time that galectin-3; a
carbohydrate-binding protein is an immune modulator
that plays an important role in the α-synuclein-induced
activation of microglia. We identified a profound inflam-
matory inhibition of microglia cells by genetic down-
regulation or pharmacological inhibition of galectin-3 or
by using galectin-3 knockout primary microglia follow-
ing activation by α-synuclein aggregates. In agreement
with these results, prior work suggests that α-synuclein
oligomers are neurotoxic and induce a strong inflamma-
tory response in microglia cells, exceeding that seen
after exposure to α-synuclein monomers [18]. Interest-
ingly, Tokuda and colleagues have identified elevated
levels of α-synuclein oligomers and an increased oligo-
mers/total-α-synuclein ratio in the cerebrospinal fluid in
PD patients, suggesting that α-synuclein oligomers may
contribute to the progression of PD [51].
Recent discoveries have also demonstrated that α-

synuclein can transfer from one cell to another and seed
endogenous protein aggregation within the recipient cell
in a prion-like fashion [13]. Besides spreading from
neuron to neuron, α-synuclein can also spread from
neurons to glial cells as shown previously in vitro and
in vivo [52]. Due to the presence of α-synuclein in the
extracellular milieu, several novel treatment strategies
focusing on reducing the α-synuclein levels have been
proposed including immunotherapy [53,54], delivery of
α-synuclein degrading enzymes [55] or altering micro-
glial activity [56]. Indeed, microglial activation has been
linked to several neurodegenerative disorders [57] and
therefore, a pharmacological intervention on the
inflammatory response exerted by microglia may be a
promising therapeutic target. In attempts to reduce
microglial activity, several different inflammatory path-
ways have been targeted in earlier studies. For example
peroxiredoxin 2, which inhibits the mitogen-activated
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Figure 6 Abrogation of iNOS proteins level and pro-inflammatory cytokines reduction in primary microglial cells from galectin-3
knockout mice after activation with α-synuclein. Primary microglial culture from wild-type mice shows robust iNOS expression following
exposure of 20 μM α-synuclein aggregates, or LPS (100 ng/ml), for 12 h (A). Lower concentrations of α-synuclein aggregates, 5 μM and below,
failed to induce iNOS expression in wild- type microglia (A). Primary microglia from galectin-3 knockout mice completely lack iNOS up regulation
following exposure of 20 μM α-synuclein aggregates for 12 h (B). Cytokine levels in culture medium from primary microglial cells were measured
after 12 h incubation with α-synuclein aggregates. Treatment of wild-type microglia with 5 and 20 μM α-synuclein aggregates for 12 h induced
increased levels of IL-1β, IL-12, IFN-γ and IL-4 (C). Treatment of galectin-3 knockout microglia for 12 h reduced levels of IL-1β IL-12 using 20 μM
α-synuclein aggregates. Cytokine levels of IFN-γ and IL-4 did not change in galectin-3 knockout compared to wild-type microglia. Two-way
ANOVA, *P < 0.05, **P < 0.01, n = 5, mean ± S.E.M.
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protein kinase and the transcription factor nuclear
factor-κB (NF-kB), have shown to be effective [58]. Add-
itionally, minocycline, one of the most used inhibitors
for microglia activation has also been suggested to spe-
cifically inhibit the M1 phenotype [59]. Moreover, inhib-
ition of NADPH oxidase 2 (Nox2) has also been shown
to reduce microglial activation in α-synuclein-induced
inflammation model [60].
In this study, we used a small molecule inhibitor target-

ing galectin-3 and found that it inhibited microglial ac-
tivation following challenge with aggregated α-synuclein.
Galectin-3 inhibitor has been successfully tested in other
pathological conditions with evidence for a rate-limiting
role of galectin-3 [46]. For example, in a mouse model of
hepatitis, the galectin-3 inhibitor attenuated liver damage
and proinflammatory T cell-mediated cytokine release
(IFN-γ- and IL-17- and IL-4 producing CD4+ T cells).
The same inhibitor also increased the number of T cells
producing the anti-inflammatory IL-10 while promoting
activation of M2 phenotype in macrophages [45]. Re-
cently, the inhibitor was shown to support the survival of
pancreatic beta cells in an apoptotic model induced by
proinflammatory cytokines TNF-α + IFN-γ + IL-1β [44]. In
our current model system, we observed an up-regulation
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of both pro and anti-inflammatory cytokines released from
primary and BV2 microglial cells. After analysis, we de-
tected a significant up regulation of pro-inflammatory cy-
tokines TNF-α, IL-2 and IL-12. Using either, the galectin-3
inhibitor for 12 h or genetic down-regulation using siRNA
we found a significant down-regulation in different pro-
inflammatory molecules that include iNOS and TNF-α,
molecules involved in the nuclear factor-kappa Beta (NF-
κβ) pathway [61]. Using primary microglial cells derived
from galectin-3 knockout mice, we identified a significant
reduction in IL-12 and IL-1β release compared to wild
type microglia. Interestingly, the absence of galectin-3 did
not significantly affect the levels of IFN-γ or cytokines re-
lated to alternative activation pathway (e.g. IL-4) suggest-
ing that, in response to α-synuclein, galectin-3 plays a
specific inflammatory role in microglial activation. Such
selective role for galectin-3 is noteworthy as galectin-3
regulates traffic of specific membrane glycoproteins (e.g.
receptors) [62]. While the regulatory roles of galectins vary
between different cell types, this variation is likely due to
the galectin type and/or the type of glycans expressed in a
particular cell [63]. Our findings support the notion that
the inflammatory modulation exerted by galectin-3 is re-
lated to specific inflammatory pathways.
We have identified a robust reduction of IL-12 cyto-

kine level in the primary galectin-3 KO microglia when
compared to wild type microglial cells. The IL-12 pro-
duction is regulated through multiple pathways that in-
clude: NF-κβ, p38 mitogen-activated protein (MAP)
kinase, cyclic adenosine monophosphate (cyclic AMP)-
modulating molecules and nitric oxide (NO) [64]. In line
with our findings, several studies have shown a relation-
ship between iNOS inhibition and a down-regulation of
IL-12 expression [65]. Our results demonstrate a profound
iNOS expression and a pro-inflammatory cytokines re-
duction upon galectin-3 knockdown, gene deletion or
pharmacological inhibition, suggesting that the NF-κβ
pathway may indeed be the effector pathway for galectin-
3. Moreover, the inflammasome, which generates mature
IL-1β by activating caspase-1, has also been shown to be
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associated with microglial activation [66-69]. Indeed, re-
cent findings suggest that this inflammatory signaling
pathway is activated by the phagocytosis of α-synuclein
[17,70]. For instance, Freeman and colleagues described a
specific interaction between galectin-3 and the phago-
somes/lysosomes containing α-synuclein [70]. We observed
a remarkable 80% inhibition of α-synuclein-induced phago-
cytosis by pharmacological inhibition of galectin-3. This
suggests that galectin-3 regulates α-synuclein-induced acti-
vation of microglia. On the other hand, increased phagocyt-
osis of α-synuclein by microglia within the substantia nigra
could potentially reduce the load of toxic α-synuclein spe-
cies [71].
Indeed, we found galectin-3 immunoreactive microglia

12 h following injection of monomeric or oligomeric α-
synuclein proteins. However, we did not detected
galectin-3 immunoreactive cells after fibril injections at
the same time points suggesting different up-take dy-
namics or intracellular processing [47]. At later time
point however, α-synuclein fibrils and oligomers induced
a robust galectin-3 immunoreactivity whereas monomers
failed to induce a similar response indicating that mono-
mers may be processed intracellular within 72 h without
galectin-3 activation.

Conclusions
We have demonstrated that galectin-3 is an important
molecule that contributes to full-blown microglial activ-
ity upon exposure to α-synuclein aggregates. Genetic ab-
lation, down-regulating galectin-3, or pharmacologically
inhibition of galectin-3, resulted in a profound down-
regulation of microglial activation (i.e. reduced levels of
iNOS, TNF-α, IL-12, IL-1Β and the phagocytic ability of
microglia). Following injections of α-synuclein species in
the olfactory bulb, we observe an up-regulation of
galectin-3 in microglial cells that had taken up the
injected α-synuclein, providing further support for the
importance of galectin-3 in vivo.

Additional files

Additional file 1: Figure S1. Characterization of α-synuclein monomers
and α-synuclein aggregates. We analyzed our α-synuclein preparations
using Transmission Electron Micrograph (TEM) (A-C) and western blot (D).
Images from TEM showed small molecules in the preparation of monomers
(B) and larger molecule arrangements in our aggregated preparations (C),
suggested monomeric and oligomeric/fibril proteins structures, respectively.
Western Blot analysis confirmed monomeric protein in our monomer
protein preparations. In our protein aggregate preparation we found
oligomers and monomers and a small fraction of fibrils (>250 kDa). D1,
normal exposure time; D2, long exposure time.

Additional file 2: Figure S2. Survival assay showed no impairment in
microglia viability after treatment with α-synuclein and/or galectin-3
inhibitor. BV2 cell viability was used to study the effect of α-synuclein
aggregates and the galectin-3 inhibitor, alone or in combination after
12 h culturing. α-synuclein aggregates did not negatively affect the cell
viability. In fact, α-synuclein aggregates (with or together without inhibitor)
showed increased mitochondrial activity. XTT Cell Viability Assay Kit was
used. One-way ANOVA, *P < 0.05, n = 4, mean ± S.E.M.
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