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Abstract

Mutations in ~100 genes cause muscle diseases with complex and often unexplained genotype/phenotype
correlations. Next-generation sequencing studies identify a greater-than-expected number of genetic variations in the
human genome. This suggests that existing clinical monogenic testing systematically miss very relevant information.
We have created a core panel of genes that cause all known forms of nonsyndromic muscle disorders (MotorPlex). It
comprises 93 loci, among which are the largest and most complex human genes, such as TTN, RYR1, NEB and DMD.
MotorPlex captures at least 99.2% of 2,544 exons with a very accurate and uniform coverage. This quality is highlighted
by the discovery of 20-30% more variations in comparison with whole exome sequencing. The coverage homogeneity
has also made feasible to apply a cost-effective pooled sequencing strategy while maintaining optimal sensitivity and
specificity.
We studied 177 unresolved cases of myopathies for which the best candidate genes were previously excluded. We have
identified known pathogenic variants in 52 patients and potential causative ones in further 56 patients. We have also
discovered 23 patients showing multiple true disease-associated variants suggesting complex inheritance. Moreover, we
frequently detected other nonsynonymous variants of unknown significance in the largest muscle genes. Cost-effective
combinatorial pools of DNA samples were similarly accurate (97-99%).
MotorPlex is a very robust platform that overcomes for power, costs, speed, sensitivity and specificity the gene-by-gene
strategy. The applicability of pooling makes this tool affordable for the screening of genetic variability of muscle genes
also in a larger population. We consider that our strategy can have much broader applications.
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Introduction
Muscle genetic disorders comprise about 100 different
genetic conditions [1,2], characterized by a clinical, genetic
and biochemical heterogeneity. The molecular diagnosis
for myopathic patients is crucial for genetic counseling,
for prognosis and for available and forthcoming mutation-
specific treatments [3-5]. In addition, patients that share
the same mutation may have a different type of muscle
affection with the selective involvement of other muscle
compartments or myocardial damage. Thus, the primary
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defect may be modified or not by additional and variable
elements that may be genetic or not. The most severe
cases of congenital or childhood-onset myopathies often
result from mutations in genes encoding proteins belong-
ing to common pathways [6]. To provide a clue to address
genetic testing, a muscle biopsy is often required that may
be useful, but not well accepted by patients. The single
gene testing can be diagnostic only in patients with most
recognizable disorders. In unspecific cases of muscular
diseases, however, no effective methodology has been
developed for the parallel testing of all disease genes
identified so far [7].
Next-generation sequencing (NGS) is changing our

view of biology and medicine allowing the large-scale
calling of small variations in DNA sequences [8]. In the
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last few years, the whole-exome sequencing (WES) and
whole-genome sequencing (WGS) have received wide-
spread recognition as universal tests for the discovery of
novel causes of Mendelian disorders in families [9]. The
power to discover a novel Mendelian condition increases
with the family size, even if successful studies, identifying
novel disease genes from multiple small families with the
same phenotype, have been published [10]. Structural and
copy number variations are not well detected by NGS
technologies [11-14]. However, the WES/WGS use for
the clinical testing of isolated cases is still debated. First,
there are ethical issues linked to the management of the
incidental findings [15]. The second limitation is given by
the practical problem that the coverage is usually too low
for clinical diagnosis. Hence the cost-effectiveness is
reduced, considering that WES/WGS may require either
numerous validation procedures, mainly based on conven-
tional PCR and Sanger sequencing reactions [16]. Innova-
tive strategies of clinical exome sequencing at high
coverage have been described [17], but the cost for a
single patient is still too high for routine diagnosis. Thus,
there is still space for targeted strategies [18] and the
HaloPlex Target Enrichment System [19] represents an in-
novative technology for targeting, since it uses a combin-
ation of eight different enzyme restriction followed by
probe capture. It permits a single-tube target amplification
and one can accurately predict the precise sequence
coverage in advance. We have developed a NGS targeting
workflow as a single testing methodology for the diagnosis
of genetic myopathies that we named Motorplex. Here we
demonstrate the high sensitivity and specificity of Motor-
plex. We challenged our platform against complex DNA
pools. Even with this complexity, Motorplex kept produ-
cing reliable data with high sensitivity and specificity
values. Furthermore, pooling reduced the cost of the
entire analysis at negligible values, implementing applica-
tions for large studies of populations [16,20].

Materials and methods
Patients
Encrypted DNA samples from patients with clinical
diagnosis of nonspecific myopathies, congenital myopathy,
proximal muscle weakness or limb-girdle muscular dys-
trophy (LGMD) were included. The Italian Networks of
Congenital Myopathies (coordinated by C.B. and F.M.S.)
of LGMD (by F.M. and G.P.C.) were involved together
with a large number of other single clinical centers. We
asked all them the possibility to share more clinical and
laboratory findings, when necessary. We also requested to
provide information on familial segregation and previous
negative genetic tests. Internal patients signed a written
informed consent, according to the guidelines of Telethon
Italy and approved by the Ethics Committee of the
“Seconda Università degli Studi di Napoli”, Naples, Italy.
DNA samples were extracted using standard procedures.
DNA quality and quantity were assessed using both
spectrophotometric (Nanodrop ND 1000, Thermo Scien-
tific Inc., Rockford, IL, USA) and fluorometry-based (Qubit
2.0 Fluorometer, Life Technologies, Carlsbad, CA, USA)
methods.

In silico design of MotorPlex
We included in the design all the 93 genes that are
universally considered as genetic causes of nonsyndromic
myopathies (Additional file 1: Table S1). In particular, we
only selected genes determining a primary skeletal muscle
disease, such as underlying muscular dystrophies, congeni-
tal myopathies, metabolic myopathies, congenital muscular
dystrophies, Emery-Dreifuss muscular dystrophy, etc. We
therefore excluded loci associated with other neuromuscu-
lar and neurological disorders such as congenital myasthe-
nias, myotonic dystrophy, spinal muscular atrophy, ataxias,
neuropathies, or paraplegias for which differential diagno-
sis may be clinically possible. For each locus, all predicted
exons and at least ten flanking nucleotides were always in-
cluded in the electronic design by the custom NGS Agilent
SureDesign webtool. Setting the sequence length at 100×2
nucleotides, the predicted target size amounted to 2,544
regions and 493.598kb. Around 20% of the target is repre-
sented by TTN coding regions.

NGS workflow
For library preparation of single samples, we followed
the manufacturer’s instructions (HaloPlex Target Enrich-
ment System For Illumina Sequencing, Protocol version
D, August 2012, Agilent Technologies, Santa Clara, CA,
USA). We started using 200ng of genomic DNA and
strictly followed the protocol, with the exception that
restricted fragments were hybridized for at least 16–24
hours to the specific probes. After the capture of bio-
tinylated target DNA, using streptavidin beads, nicks in
the circularized fragments were closed by a ligase. Finally,
the captured target DNA was eluted by NaOH and ampli-
fied by PCR. Amplified target molecules were purified
using Agencourt AMPure XP beads (Beckman Coulter
Genomics, Bernried am Starnberger See, Germany).
The enriched target DNA in each library sample was

validated and quantified by microfluidics analysis using
the Bioanalyzer High Sensitivity DNA Assay kit (Agilent
Technologies) and the 2100 Bioanalyzer with the 2100
Expert Software. Usually 20 individual samples were run
in a single lane (250M reads), generating 100-bp paired
end reads.
For Pool-Seq experiments, equimolar pools of 5 or 16

DNA samples (detector and scouting pools) were created
and 200ng of each pool was used for the HaloPlex enrich-
ment strategy. Sixteen detector and five scouting pools
were usually run in a single HiSeq1000 lane.
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Targeted sequencing analysis
The libraries were sequenced using the HiSeq1000 system
(Illumina inc., San Diego, CA, USA). The generated se-
quences were analyzed using an in-house pipeline de-
signed to automate the analysis workflow, composed by
modules performing every step using the appropriate tools
available to the scientific community or developed in-
house [21]. Paired sequencing reads were aligned to the
reference genome (UCSC, hg19 build) using BWA [22],
sorted with Picard (http://picard.sourceforge.net) and lo-
cally realigned around insertions-deletions with Genome
Analysis Toolkit (GATK) [23]. The UnifiedGenotyper al-
gorithm of GATK was used for SNV and small insertions-
deletions (ins-del) calling, with parameters adapted to the
Haloplex-generated sequences. The analysis of pools was
performed with UnifiedGenotyper as well, adapting the
ploidy parameter to the number of chromosomes present
in the samples (10 for the detector and 32 for the scout
pools) and the minimal ins-del fraction parameter accord-
ingly. The called SNV and ins-del variants produced with
both platforms were annotated using ANNOVAR [24]
with: the relative position in genes using RefSeq [25] gene
model, amino acid change, presence in dbSNP v137 [26],
frequency in NHLBI Exome Variant Server (http://evs.gs.
washington.edu/EVS) and 1000 genomes large scale
projects [27], multiple cross-species conservation [28,29]
and prediction scores of damaging on protein activity
[30-33]. The annotated variants were then imported into
the internal variation database, which stores all the varia-
tions found in the re-sequencing projects performed so far
in our institute. The database was then queried to gener-
ate the filtered list of variations and the internal database
frequency in samples with unrelated phenotype was used
as further annotation and filtering criteria. The alignments
at candidate positions were visually inspected using the
Integrative genomics viewer (IGV) [34]. We selected from
the database the non-synonymous SNVs and ins-del, with
a frequency lower than 2%, which was followed by manual
inspection and further filtering criteria based on the pres-
ence in unrelated samples of the database, on the presence
in the other samples of the Motorplex experiment and on
the conservation of the mutations, with a final selection of
rare, possibly causative, variations per individual.

Results
Validation study of MotorPlex
To design MotorPlex we used a straightforward procedure.
Briefly, disease genes causing a muscular phenotype, in-
cluding the biggest genes of the human genome, like titin
(TTN) or dystrophin (DMD), were selected. The target
sequences, corresponding to 0.5Mbp were enriched by the
HaloPlex system (see Materials and methods). To validate
MotorPlex, we created a training set of twenty DNA sam-
ples belonging to patients (15 males and 5 females) affected
by different forms of limb-girdle muscular dystrophy or
congenital myopathy (Additional file 2: Table S2) and
compared with data from whole exome sequencing (WES)
(Figure 1). For each sample, about 98% of reads gener-
ated (Figure 1a and Additional file 3: Table S4) were
on target (compared to 88% obtained by WES) and
fewer than 0.5% of targeted regions were not covered
(about 15% of human exons are not analyzed by WES,
Additional file 4: Figure S1). Moreover, more than 95%
of targeted nucleotides were read at a 100× depth and
a 500× depth was obtained for 80% of these; on the
contrary, by performing a WES analysis, fewer than
70% of exons were covered at 20× (Figure 1b). From
previous amplicon Sanger sequencing from these
samples, we knew about 84 variants in 17 different
genes (Additional file 5: Table S3). All these known
variants were correctly called and no additional change
was seen within the sequenced target (100% sensitivity
and specificity). Moreover, to assess the reproducibility
of the targeted enrichment and the subsequent NGS
workflow, the same sample (43U) was analyzed twice.
After filtering, variants were always confirmed, includ-
ing the putative causative one (Table 1). Outside the
Sanger coverage, 4,991 additional variations were called
(Additional file 6: Table S5).

Validation study of double-check pooling
To challenge MotorPlex to be applied to large studies on
thousands of patients and/or to detect mosaic muta-
tions, we designed a combinatorial pooling strategy.
After some initial attempts with pools of identical sizes,
we changed our strategy. The general arrangement was
to have the same sample in two different independent
pools, composed of two exclusive combinations of sam-
ples (Figure 2). This permitted us to identify both the
rare variations and the sample mutated. In particular,
the pools were organized in two groups: the “detector
pool” only containing five samples (10 alleles) that had
the purpose of detecting variations with the optimal
sensitivity and the “scout pool” composed of 16 samples
(32 alleles) that confirmed the variation(s) and attribute
them univocally to distinct DNA samples (Additional file 7:
Figure S2; Additional file 8, Table S6). We paid attention
each time to include the index cases alone, excluding
related family members.
To validate this arrangement, we selected five samples

that we previously sequenced individually and called 1,235
variations. We pooled them in the same detector pool
(P9) and then reanalyzed in different scout pools. Impres-
sively, in pool P9 we called 1,232/1,235 variations belong-
ing to the individual samples, calculating the sensitivity
value at 99.8%. The three missing variations (an insertion
in RRM2B and two point variants in TTN) were located
in regions with lower coverage. On the contrary, no
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Figure 1 A comparison between MotorPlex and a Whole Exome strategy (WES) demonstrates the better performance of the targeted
strategy. (a) 97.75% of reads generated in a MotorPlex experiment fall in the regions of interest and only 0.67% of targeted regions are not
sequenced. On the contrary, for WES 88.66% of reads are on target and 14.89% of targeted exons are not effectively covered. (b) The percentage
of targeted regions covered at high depth by MotorPlex is higher than that obtained by WES. In particular, 96.01% and 81.6% of regions are,
respectively, covered at 100x and 200× by using MotorPlex versus 35.49% and 1.90% by WES.
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variation was called in pool 9 in addition to those of
individual samples, demonstrating the absence of false
positives and artefacts due to the pooling strategy.
Another two samples from the training set were
inserted in another two detector pools, showing similar
results.
We then confirmed 223/230 (97%) variations tested by

Sanger sequencing, thus providing the specificity value of
the method. Moreover, the combined use of detector
pools and scout pools allowed us to “clean” the results.
50% of off target variations (n=1,291), in fact, were not
called in the scout pools and were easily filtered off during
bionformatic analysis. In addition, about 25% of variants
in low covered regions (<500 total reads), representing in
a large percentage false positive calls, were similarly
filtered off because they were not detected in the scout
pools (Additional file 9: Figure S3).

Variants and interpretation
The targeted analysis of 93 genes showed a total of
23,109 rare variants (<0.01 frequency) in 173 patients
(1.4 variants/gene/patient). To provide a preliminary
interpretation in relationship with the clinical suspicion,
we set bioinformatic filters that weigh the variant class
(missense, indel, stopgain or stoploss), the calculated
frequency in public and internal databases and the annota-
tion as causative variants. Finally, we reconsidered critically
the correspondence with the clinical presentation, the age
at onset and the segregation in familial cases.
In detail, we identified 52 patients (52/177=29%) with

variants of likely pathogenicity or predicted to affect
function (Table 1 and Additional file 10): most of them
(38/52=73%) had known or truncating variants (indel,
stopgtain or stoploss). Five patients (5/52=9.6%) showed
a novel variant in addition to a pathogenic allele in a
recessive gene. The remaining samples (9/52=17%) had
novel variants that are predicted to affect function in
genes fitting with the clinical suspicion.
In other 56 samples (56/177=32%), we identified

potential causative variants (Table 2 and Additional file 10).
In these cases, there was only a partial correspondence
with the clinical phenotype. For example, a number of
variants had been previously associated with cardiomyop-
athy, but their pathogenic role in congenital myopathy or



Table 1 List of pathogenic variants

Sample ID Sex Clinical diagnosis Inheritance Histopathologic features Variant(s)

Single1 M CM Sp c.n. DNM2 chr19:10934538* c.1856 C>G p.S619W het c.n.sr1

Single3 M LGMD Sp m.f. CAPN3 chr15:42695076* c.1621 C>T p.R541W het LGMDsr2

CAPN3 chr15:42682142* c.802-9G>A spl. het LGMDsr3

Single6 M LGMD Rec m.f. FKRP chr19:47259458 c.751G>T p.A251S het

FKRP chr19:47259758 c.G1051C p.A351P het

Single8 M LGMD Sp n.a. DYSF chr2:71838708 c.4119 C>A p.N1373K het

DYSF chr2:71762413 c.1369G>A p.E457K het

Single15 F LGMD/CM Sp d.f. SYNE2 chr14:64688329 c.663G>A p.W221X het

Single16 M LGMD/DCM Sp d.f. SGCG chr13:23869573* c.525 delT p.F175L fsX20 hom LGMDsr4

LDB3 chr10:88446830* c.349G>A p.D117N het DCMsr5

Single19 M LGMD Sp m.f. RYR1 chr19:39062797* c.13885G>A p.V4629M het CMsr6

Single20 M LGMD/DCM Rec c.n. RYR1 chr19:39009932* c.10097G>A p.R3366H het Multiminicoresr7

RYR1 chr19:38973933* c.4711 A>G p.I1571V het MHsr8

RYR1 chr19:39034191* c.11798A>G p.Y3933C het MHsr9

RYR1 chr19:38942453 c.G1172C p.R391P het

DES chr2:220284876* c.638 C>T p.A213V het DCM10

1/17s F CM Sp c.n. TTN chr2:179452695* c.63439G>A p.A21157T het ARVDsr11

TTN chr2:179496025 c.G43750T p.G14584X het

TTN chr2:179392277* c.107576T>C p.M35859T het ARVDsr11

1/21s M LGMD n.a. n.a. SGCA chr17:48246607* c.739G>A p.247V>M het LGMDsr12

SGCA chr17:48245758* c.409G>A p.E137K het LGMDsr13

2/17s F CM Sp cftdm MYH7 chr14:23886406 c.T4475C p.L1492P het

2/20s M LGMD n.a. n.a. POMT2 chr14:77745129* c.1975 C>T p.659 R>W het CMDsr14

POMT2 chr14:77769283* c.551 C>T p.T184M het LGMDsr15

3/20s F LGMD Sp cftdm TPM2 chr9:35689792* c.20_22delAGA p.7Kdel het CMsr16

4/17s M LGMD Rec c.n. ANO5 chr11:22242646* ANO5:c.191dupA p.64N>Kfs*15 hom LGMDsr17

4/18s M LGMD Sp vacuoles DNAJB6 chr7:157175006 c.413G>A p.G138E het

5/17s M LGMD/DCM Sp m.f. MYOT chr5:137213267 c.591delTG p.199F>S fsX3 het

5/21s M LGMD Sp c.n. CAV3 chr3:8787288* c.191C>G p.T64S het HCMsr18

6/20s M LGMD Sp d.f. ACADVL chr17:7127330* c.G1376A p.R459Q het VLCADsr19

ACADVL chr17:7128130 c.C754T p.A585V het

7/17s M LGMD Sp m.f. CAPN3 chr15:42702843* c.2242 C>T p.R748X het LGMDsr20
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Table 1 List of pathogenic variants (Continued)

CAPN3 chr15:42693952* c.1468 C>T p.R490W het LGMDsr21

7/20s F LGMD Sp d.f. LMNA chr1:156100408* c.357 C>T p.R119R (spl.) het EDMDsr22

8/19s M LGMD n.a. d.f. DNAJB6 chr7:157155959 c.C170T p.S57L het

10/17s F CM Sp m.f. MYH7 chr14:23886518 c.G4363T p.E1455X het

10/21s M LGMD/FSHD Dom d.f. SMCHD1 chr18:2700849* c.C1580T p.T527M het FSHDsr23

11/18s M CM Sp nemaline NEB chr2:152447860 c.6915+2T>C spl. het

NEB chr2:152553662 c.C1470T p.D490D (spl.?) het

12/18s F CM Sp cftdm MYH7 chr14:23882063 c.G5808C p.X1936Y het

12/21s F LGMD Sp d.f. PYGM chr11:64519958 c.A1537G p.I513V het

PYGM chr11:64514809* c.C2199G p.Y733X het McArdlesr24

13/20s M LGMD Rec n.a. LAMA2 chr6:129722399* c.C5476T p.R1826X het LGMDsr25

LAMA2 chr6:129571264 c.1791_1793del AGT p.598 del V het

13/21s M LGMD Sp d.f. SGCG chr13:23898652* c.848G>A p.C283Y hom LGMDsr26

14/20s F LGMD n.a. n.a. CAPN3 chr15:42686485* c.1061T>G p.V354G het LGMDsr21

CAPN3 chr15:42689077 c.1193+2T>C spl. het

14/18s M LGMD n.a. d.f. DMD chrX:32360366* c.G5773T p.E1925X hem Duchennesr27

15/19s M CM Sp multiminicores MYH7 chr14:23885313* c.4850_4852del p.1617 del K het Distalsr28

16/18s M LGMD Sp no alterations CAPN3 chr15:42691746* c.1250 C>T p.T417M hom LGMDsr29

16/20s M CM Sp cftdm TTN chr2:179431175 c.C79684T p.R26562X het

TTN chr2:179526510 c.A39019T p.K13007X het

16/21s F CM Dom n.a. TPM2 chr9:35685541* c.A382G p.K128E het CFTDsr30

23/38s M CM Sp cftdm RYR1 chr19:38959672 c.3449delG p.C1150fs het

RYR1 chr19:38985186 c.6469G>A p.E2157K het

RYR1 chr19:39003108* c.9457G>A p.G3153R het MHsr31

23/41s M CM Sp m.f. RYR1 chr19:38990637* c.G7304T p.R2435L hom CCDsr32

24/42s F CM n.a. n.a. ACTA1 chr1:229567867* c.G682C p.E228Q het Nemalinesr33

25/38s M CM Sp cftdm CRYAB chr11:111779520 c.A496T p.K166X het

25/39s F CM Dom c.n. RYR1 chr19:39075614* c.14678G>A p.R4893Q het CCDsr34

25/41s F CM n.a. n.a. MYH7 chr14:23886750 c.G4315C p.A1439P het

28/39s F CM Dom minicore MYH7 chr14:23885313* c.4850_4852del p.1617del K het Distalsr28

28/41s M CM Sp c.n. MTM1 chrX:149831996* c.C1558T p.R520X hem Myotubularsr35

29/41s F CM Rec n.a. NEB chr2:152387617 c.21628-2A>T spl. het
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Table 1 List of pathogenic variants (Continued)

NEB chr2:152541300 c.C2827T p.Q943X het

30/42s F CM Rec cftdm RYR1 chr19:38948185* c.C1840T p.R614C het MHsr36

RYR1 chr19:38959747 c.G3523A p.E1175K het

31/42s F CM Rec nemaline NEB chr2:152471093 c.11298_11300delTAC p.Y3766del hom

32/41s M CM Dom c.n. MTM1 chrX:149826390 c.1150 C>T p.Q384X het

32/42s F CM Dom minicore DNM2 chr19:10939917 c.C2252A p.T751N het

33/41s M CM Rec nemaline NEB chr2:152370944 c.23122-2A>G spl. het

NEB chr2:152544037 c.A2533G p.K845E het

36/42s M CM Dom n.a. RYR1 chr19:39075629* c.T14693C p.I4898T het CCDsr37

37/39s M LGMD Sp d.f. DMD chrX:32841417* c.T328C p.W110R hem Beckersr38

37/40s F LGMD Sp n.a. SYNE2 chr14:64676751* c.C18632T p.T6211M het EDMDsr39

37/41s F CM Dom m.f. MTM1 chrX:149826390 c.1150 C>T p.Q384X het

*Already reported. For references, see Additional file 10.
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Figure 2 NGS targeting workflow. Ninety-three disease genes causing a muscular phenotype were selected. To cover all their exons and the ten
flanking bases, an enrichment strategy, based on HaloPlex system, was designed. DNA samples of 80 patients were analyzed twice in an independent
manner, using a combinatorial pooling scheme. As requested by HaloPlex protocol, DNA samples were digested, barcoded and amplified. The 80 samples
were run at the same time in a single lane of the flow cell of HiSeq 1000. The following data analysis allowed us to detect putative causative variants
validated by Sanger sequencing.
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in LGMDs was not yet established. To the group
belong patients having two rare variants in TTN gene
or at least one variant in COL6A1, COL6A2, COL6A3,
SYNE1, SYNE2 and FLNC genes. These molecular
findings in these 56 samples were not considered
strictly disease-causing and further tests are required.
The most surprising finding was, however, the

presence of additional damaging or potential damaging
variants in 16 patients of the first two groups (23/
108=21%) in whom other pathogenic variants or vari-
ants of uncertain significance had already been identi-
fied. These variants, if they had been detected alone in
the context of a single gene testing, would have been
considered as causative.
The third group includes 26 patients (26/177=15%) in

which we discovered a single truncating variant (or a
known disease-associated variant) in a recessive gene
that is compatible with the phenotype. The second allele
may carry a RNA splicing defect that is generally not
predictable by DNA sequencing or, also, a variation in
not investigated promoters or regulatory regions.
Discussion
In the last decade, a remarkable progress has been made in
discovering new disease genes and differentiating similar
muscle disorders [1,2]. This growing genetic heterogeneity
highlights the problem of a very complex diagnosis [35].
Furthermore, genome sequencing studies suggest that the
clinical genetic test may be incomplete not only when the
causative mutation is missing, but also when the genotype/
phenotype correlation appears weak. This is particularly
true when the familial recurrence is unclear, with some
relatives that only share minor affections. In families with
patients who are more severely affected, this “grey area” is
problematic for both genetic counselling and forthcoming
mutation-specific treatments. However, this represents the
proper challenge for the new genomic, high-throughput
technologies: the power of discovery has been dramatically
boosted by the introduction of the next-generation sequen-
cing (NGS) techniques [13,36-38]. In the NGS era, the
genetic testing is going to move from few candidate genes
to broader panels of genes [39] or, ultimately, to the entire
genome. This will have consequences on the diagnostic



Table 2 Variants of unknown significance (Vous)

Sample
ID

Sex Clinical
diagnosis

Inheritance Histopathologic
features

Variant(s)

Single7 M LGMD/EDMD Rec d.f. NEB chr2:152468776 c.A11729G p.D3910G het

NEB chr2:152495898 c.C8890T spl. p.R2964C het

COL6A2 chr21:47552071 c.2665 C>T p.Q889X het

Single9 M LGMD n.a. m.f. RYR1 chr19:38986923* c.6617 C>T p.T2206M het MHsr40

Single13 M CM Sp n.a. LAMA2 chr6:129687396* c.G4750G>A p.G1584S het LGMDsr41

LAMA2 chr6:129775423 c.6697G>A p.V2233I het

NEB chr2:152506812 c.C7309T p.R2437W het

NEB chr2:152512781 c.T6381A p.D2127E het

Single14 F LGMD Sp d.f. COL6A3 chr2:238249316 c.C8243T p.P2748L het

COL6A3 chr2:238289767 c.A1688G p.D563G het

Single18 M CM n.a. n.a. HSPG2 chr1:22176684 c.7296 A>T spl. het

HSPG2 chr1:22200473 c.3688G>A p.G1230S het

1/18s M CM Sp c.n. RYR1 chr19:38990340 c.G7093A p.G2365R het

RYR1 chr19:39018347* c.G10747C p.E3583Q het MHsr42

2/19s M LGMD/DCM Sp d.f. NEB chr2:152404851 c.G20128A p.V6710I het

NEB chr2:152534216 c.C3637T p.T1213M het

3/17s F LGMD Sp cftdm SYNE2 chr14:64407373 c.A121G p.I41V het

4/21s M LGMD Sp d.f. MYH7 chr14:23882979* c.A5779T p.I1927F het HCMsr43

FLNC chr7:128487762 c.C4300T p.R1434C het

5/18s M LGMD n.a. n.a. TTN chr2:179393000 c.107377
+1G>A

spl. het

TTN chr2:179441932 c.C69130T p.P23044S het

5/19s F CM n.a. n.a. TTN chr2:179439491 c.C71368T p.R23790C het

TTN chr2:179596569 c.G17033A p.R5678Q het

5/20s M LGMD Sp d.f. COL6a3 chr2:238283289* c.C3445T p.R1149W het AVSDsr44

COL6a3 chr2:238296516 c.C1021T p.R341C het

NEB chr2:152476125 c.G10712C p.R3571P het

NEB chr2:152580847 c.A539G p.K180R het

6/21s M CM Dom cftdm SYNE1 chr6:152776709 c.C2744T p.T915I het

SYNE2 chr14:64468677 c.C3664T p.R1222W het

7/19s M CM Sp cftdm COL6A3 chr2:238287746* c.G2030A p.R677H het Bethlemsr45

7/21s M LGMD Sp normal TTN chr2:179500777 c.G41521A p.D13841N het

TTN chr2:179615278 c.T11849C p.I3950T het

8/20s F LGMD Sp d.f. COL6A3 chr2:238253701 c.C7162T p.P2388S
(spl.)

het

8/21s M LGMD Sp d.f. SMCHD1 chr18:2740713 c.C3527T p.T1176I het

10/18s F LGMD n.a. n.a. RYR chr19:39034191* c.A11798G p.Y3933C het MHsr9

10/19s F LGMD Sp d.f. RYR chr19:38990359* c.A7112G p.E2371G het MHsr31

10/21s M LGMD Sp d.f. SMCHD1 chr18:2700849 c.C1580T p.T527M het

11/17s M LGMD Sp T1FP FHL1 chrX:135278980 c.T19C p.S7P het

11/19s M LGMD Dom m.f. MYH2 chr17:10446451 c.A769G p.T257A het

11/20s M LGMD Sp normal FLNC chr7:128482964 c.C2506T p.P836S het

12/19s M LGMD Sp d.f. COL6A2 chr21:47545454 c.T1892C p.F631S het

Savarese et al. Acta Neuropathologica Communications 2014, 2:100 Page 9 of 13
http://www.actaneurocomms.org/content/2/1/100



Table 2 Variants of unknown significance (Vous) (Continued)

13/18s M CM Sp cftdm and
multiminicore

MYBPC2 chr11:47356715* c.C2783T p.S928L het HCMsr46

SYNE2 chr14:64447727 c.A1672C p.K558Q het

14/21s M LGMD Sp d.f. RYR1 chr19:39076763 c.C14901G p.D4967E het

RYR1 chr19:39076777 c.C14915T p.T4972I het

15/20s M LGMD Sp normal LDB3 chr10:88492723 c.T2174A p.I725N het

15/21s F CM Sp central core PHKA1 chrX:71840734 c.G1978A p.V660I het

SYNE1 chr6:152746618 c.C5165T p.S1722L het

SYNE2 chr14:64548224 c.A11410G p.T3804A het

23/40s M CM n.a. c.n. TMEM43 chr3:14175304 c.C578T p.S193L het

MYBPC3 chr11:47364189* c.G1564A p.A522T het HCMsr47

24/38s M CM Sp cftdm TTN chr2:179559591 c.G31313A p.R10438Q het

TTN chr2:179586762 c.C22628T p.P7543L het

FLNC chr7:128475627 c.C600T p.P200P spl. het

24/39s M CM n.a. n.a. FLNC chr7:128492888 c.C6011T p.S2004F het

24/41s F CM n.a. n.a. TTN chr2:179495045 c.A44204G p.N14735S het

TTN chr2:179586756 c.G22634A p.R7545Q het

25/40s M CM Sp nemaline FLNC chr7:128494538 c.G6799A p.V2267I het

25/42s M CM n.a. cftdm RYR1 chr19:38986890 c.C6584T p.P2195L het

26/39s M CM Sp core miopathy TTN chr2:179431924 c.T78935C p.L26312P het

TTN chr2:179614124 c.A13003G p.R4335G het

26/41s M CM n.a. n.a. DYSF chr2:71740851* c.G463A p.G155R het LGMDsr48

DYSF chr2:71827853 c.C3724T p.R1242C het

26/42s M CM n.a. core miopathy TTN chr2:179522230 c.T38033C p.V12678A het

TTN chr2:179527095 c.C37009T p.P12337S het

27/39s M CM Sp cftdm COL6A1 chr21:47406897 c.C628G p.R210G het

27/41s F CM n.a. cftdm SYNE1 chr6:152746682 c.G5001T p.A1701S
(spl.)

het

SYNE2 chr14:64484328 c.G4903A p.E1635K het

27/42s F CM n.a. multiminicores COL6A1 chr21:47406559 c.G548A p.G183D het

MYH7 chr14:23885359 c.G4807C p.A1603P het

DNM2 chr19:10909210 c.A1384G p.T462A het

28/40s M CM n.a. n.a. TTN chr2:179415978 c.G91280T p.G30427V het

TTN chr2:179415952 c.C91306T p.R30436W het

28/41s M CM Sp d.f. COL6A1 chr21:47410893 c.G1057A p.G353S het

29/38s M LGMD Rec d.f. COL6A2 chr21:47539756 c.G1324T p.G442W het

COL6A2 chr21:47551934* c.G2528A p.R843Q het AVSDsr44

30/38s F CM Sp n.a. TTN chr2:179411904 c.C94348T p.R31450C het

TTN chr2:179428049 c.G82814A p.G27604S het

31/39s M CM Sp minicores ATP7A chrX:77301920 c.G4356C p.L1452F het

31/40s F CM Sp cftdm PHKA1 chrX:71840734 c.G1978A p.V660I het

31/41s M CM Sp reducing body KBTBD13 chr15:65369638 c.C485T p.T162M het

32/40s M CM Sp T1FP TTN chr2:179583104 c.C24729A p.C8243X het

TTN chr2:179589034 c.A21068C p.Q7023P het

33/38s F LGMD Sp d.f. CNTN1 chr12:41337835 c.A1546G p.I516V het
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34/38s F LGMD Sp d.f. SMCHD1 chr18:2656250 c.G176T p.C59F het

34/41s M CM n.a. m.f. COL6A2 chr21:47545473 c.C1911G p.F637L het

35/41s M CM n.a. c.n. DYSF chr2:71730384 c.277G>A p.A93T hom

TTN chr2:179411050 c.C95008T p.R31670X het

36/38s M LGMD Sp d.f. SYNE1 chr6:152651958 c.C15746T p.T5249M het

36/39s F CM Sp cftdm COL6A2 chr21:47545885 c.G2156A p.R719Q het

CPT1B chr22:51012938 c.G767A p.R256H het

36/40s M LGMD and
DCM

Sp m.f. SYNE2 chr14:64447788 c.A1733G p.K578R het

37/38s M LGMD Sp m.f. COL6a3 chr2:238277282 c.A4824T p.R1608S het

* Already reported. For references, see Additional file 10.
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flowchart: NGS tests may represent the first tier test,
preceding biopsy and other invasive procedures.
We have applied both WES and targeted approaches to

the diagnosis of genetic disorders of muscle and collected
DNA samples of patients without diagnosis and realized
that NGS technology can be helpful for clinical diagnos-
tics, provided that a suitable tool is created. We traced an
ideal profile of it. This tool should fulfil the following re-
quirements [16,20]: 1) to be cost-effective and thus applic-
able to a large number of patients and normal individuals,
2) to be robust in the terms of target reproducibility, 3) to
be specific and sensitive with a limited need for further val-
idation steps, 4) to be large enough to include all relevant
genes and, finally, 5) to be easily upgradable in view of
novel discoveries. Here we demonstrate the ability to gener-
ate this complex targeting and to fulfil all these require-
ments. We decided to use Haloplex as the enrichment
technology. Haloplex first digests DNA using eight different
combinations of endonucleases. Our experience suggests
that this approach is more reproducible and accurate than
the random mechanical DNA fragmentation. In addition,
the capture is independent of the target base composition
and is predictable from the probe design phase. As a proof
of specificity and efficiency, we show that less than 2% of
reads generated by Motorplex are off-target, in comparison
Table 3 Predicted enrichment costs and workload for single a

Technical step

Haloplex Kit (96 samples)

Polymerase

AMPure XP beads

Validation and quantification of enriched target DNA

Total (total per sample)

Run Time

Enrichment procedure
with >12% of WES. This factor further improves the cost-
effectiveness of the approach. This platform, based on eight
different digestions and hybridization, is more accurate,
reproducible and sensitive in comparison with other pub-
lished methods [34]. We have designed the MotorPlex to
detect variations in 93 muscle-disease genes and assayed
177 pre-screened DNA samples from myopathic patients.
It is important to consider that these are all patients with
zero mutations so far detected, even if most of them have
been lengthily studied using a gene-by-gene sequencing
approach. The high coverage and depth obtained permitted
us to detect variations in most genes with sensitivity com-
parable with Sanger sequencing. According to our conser-
vative NGS data interpretation, in 52 patients (29%) the
diagnosis is complete. However, the detection rate will grow
after a further molecular characterization of putative patho-
genic variations in a second group of 56 patients. In
addition, there are 26 samples (15%) that have defects in
one single allele associated with a recessive condition. We
predict that most of these can carry an elusive hit on the
other allele such as splicing defects or copy number
mutation(s). A percentage of 15%, in fact, is a usual value
for disease-causing variants not detectable by sequencing.
The most interesting and quite surprising finding is,

however, the very high number of rare damaging variants
nd pooled DNA samples

Cost (€)

Single PoolSeq

16240,83 4263,22

86 22,575

400 105

386,8 101,5

17113.63 (213.92) 4492.29 (56.15)

Total Time (h)

Single PoolSeq

4days 1day
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identified and first the cases (26/177) with more damaging
variants in other genes in addition to those classified as
causative. These additional variants may have a potential
modifier effect. This percentage of these genetically com-
plex patients may be higher, if we consider that many other
important muscular genes (even if not disease-causing) can
also carry damaging alleles. We can easily predict that a
broader NGS approach could strengthen this observation.
We hypothesize that the intrafamilial and interfamilial
phenotypic differences may be frequently related to the
combinations of multiple disease-causing alleles, more than
to SNPs or CNVs. The so-called “modifier gene variants”
could be individually rare, but collectively common. A com-
prehensive view of all the genes involved in a pathological
process helps to point out these alleles having a minor but
probably not negligible role in the disease aetiology.
The ultimate goal of MotorPlex is given by the pooling

performances. The specificity and sensitivity values are very
high and quite similar to those obtained in singleton
testing and, above all, the diagnostic rate is not affected.
The potential applications of pooling are just in large
studies of complex and non-Mendelian disorders when a
large number of samples have to be analyzed to improve
the statistical power [40]. Considering our finding of
multiple damaging variants in disease genes, these large
studies are just around the corner. In addition, MotorPlex
may discover low-allelic fraction variants in single samples,
as in somatic mosaicisms. The pooled MotorPlex is
likewise the cheapest genetic test (Table 3) ever presented
that is able to screen 93 complex conditions at the cost of
a few PCR reactions.
In conclusion, we here demonstrate that MotorPlex can

be used to identify accurately all DNA variants also in
huge muscle genes: the platform overcomes for sensitivity
and coverage the WES approach. In addition, Pool-Seq
may be the first option to perform cost-effective popula-
tion studies to understand polygenic conditions. We think
that similar protocols could be designed to extend the
NGS applications to other studies for human genetics, as
well as for disease prevention, nutrition, forensics and
many others.
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