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Axonal degeneration in multiple sclerosis: can we
predict and prevent permanent disability?
Jae Young Lee1, Kasra Taghian2 and Steven Petratos1*
Abstract

Axonal degeneration is a major determinant of permanent neurological impairment during multiple sclerosis (MS).
Due to the variable course of clinical disease and the heterogeneity of MS lesions, the mechanisms governing
axonal degeneration may differ between disease stages. While the etiology of MS remains elusive, there now exist
potential prognostic biomarkers that can predict the conversion to clinically definite MS. Specialized imaging
techniques identifying axonal injury and drop-out are becoming established in clinical practice as a predictive
measure of MS progression, such as optical coherence tomography (OCT) or diffusion tensor imaging (DTI). However,
these imaging techniques are still being debated as predictive biomarkers since controversy surrounds their
lesion-specific association with expanded disability status scale (EDSS). A more promising diagnostic measure of
axonal degeneration has been argued for the detection of reduced N-acetyl aspartate (NAA) and Creatine ratios
via magnetic resonance spectroscopic (MRS) imaging, but again fail with its specificity for predicting actual axonal
degeneration. Greater accuracy of predictive biomarkers is therefore warranted and may include CSF neurofilament light
chain (NF-L) and neurofilament heavy chain (NF-H) levels, for progressive MS. Furthermore, defining the molecular
mechanisms that occur during the neurodegenerative changes in the various subgroups of MS may in fact prove vital
for the future development of efficacious neuroprotective therapies. The clinical translation of a combined Na+ and Ca2+

channel blocker may lead to the establishment of a bona fide neuroprotective agent for the treatment of progressive
MS. However, more specific therapeutic targets to limit axonal damage in MS need investigation and may include
such integral axonal proteins such as the collapsin response mediator protein-2 (CRMP-2), a molecule which upon
post-translational modification may propagate axonal degeneration in MS. In this review, we discuss the current
clinical determinants of axonal damage in MS and consider the cellular and molecular mechanisms that may initiate
these neurodegenerative changes. In particular we highlight the therapeutic candidates that may formulate novel
therapeutic strategies to limit axonal degeneration and EDSS during progressive MS.
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Introduction
Destructive, inflammatory demyelinating multiple sclerosis
(MS) lesions can occur throughout the central nervous
system (CNS) with preferential anatomical patterns form-
ing. Clinical symptoms in an MS patient may manifest as
a range of neurological deficits, including paresthesia,
dysesthesia, weakness, or visual disturbances such as blur-
ring or greying of vision and black spots in the visual field
(scotoma, a consequence of optic neuritis). There have
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been several risk factors postulated for the development of
MS, namely genetic, inadequate exposure to Vitamin D,
smoking, Epstein Barr virus infection early in life and geo-
graphical in relation to latitude gradient [1]. In approxi-
mately 90% of cases, the disease manifests with an initial
primary phase characterized by a relapsing-remitting pres-
entation (RRMS) where the patient experiences alternating
episodes of neurological impairment, followed by recovery
[2]. The secondary phase involves the transformation of a
relapsing-remitting presentation into a secondary progres-
sive MS (SPMS), which involves a persistent neurological
decline [2]. In contrast, 10% of patients undergo primary
progressive MS (PPMS) where the course of the disease
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adopts a steady decline in neurological function without
any periods of recovery [2]. The prognosis of MS can also
vary from complete and lasting remission to eventual par-
alysis, loss of bowel and bladder control and blindness [3],
and even death in the case of the most aggressive form of
the disease, acute rapid progressive MS [3].
Therefore, MS is considered a heterogeneous condi-

tion where disease features may vary from one patient to
another. Despite the different histopathologically charac-
terized lesions of MS, they share common hallmarks that
include areas of focal demyelination with inflammatory
infiltrating immune cells, along with axonal injury. Con-
trary to the original focus of research on the auto-
immune mechanisms that are operative in MS, there is
now clear evidence that axonal damage/loss is the major
determinant of profound neurological deficit in MS suf-
ferers. In light of the variable course of the disease and
different prognostic outcomes we discuss the possibility
that in some subgroups of MS, molecular mechanisms
may initiate axonal degeneration as a primary event, pre-
ceding inflammatory destruction of myelin, leading to
variable capacity for repair and thus variable patient
presentation.
This review focuses primarily on why MS may pro-

gress to permanent disability. The discussion covers clin-
ical, pathological, cellular and molecular mechanisms,
which govern axonal pathology in progressive MS, the
etiology of permanent neurological disability. The recent
advances in biomarkers and possible molecular mecha-
nisms driving axonal dysfunction through ion channel
and axonal transport defects will be highlighted with an
emphasis on therapeutic targeting in an attempt to halt
axonal pathology and hence progression of the disease.

Axonal indicators in the neurology clinic
Currently there is no clinical, laboratory, imaging or
pathological sign of MS that is pathognomonic for the
disease. At present, the diagnosis of MS is based on the
two McDonald criteria [3]. The first being that there
should be evidence of at least two demyelinating lesions
in the CNS that are separated both spatially and tempor-
ally. The second criterion is that all other alternative
diagnoses are ruled out by clinical investigation. There-
fore, the diagnosis of MS essentially remains one of ex-
clusion from the clinical evidence provided and so the
need for diagnostic biomarkers is warranted in particular
to personalize therapeutic regimes.
Defining axonal damage during MS, a prediction of

progression, has proven somewhat problematic since
conventional magnetic resonance imaging (MRI) does
not provide clinicians with an accurate interpretation of
the underlying pathology. Despite numerous biomarkers
of axonal damage being recently reported to be superior
in their diagnostic and eventual prognostic capacities for
MS progression, limitations still exist for their utility in
isolation.

Current imaging techniques
Further revision of the McDonald criteria in 2010 has
led to a more simplified version of MS diagnosis which
now include those patients that present with CIS, either
as monofocal or multifocal demyelinating lesions, with
involvement of the optic nerve, brainstem and cerebel-
lum, spinal cord and cerebral deep white matter tracts
[4]. Such slow expanding lesions on progression, can be
absent by T1-weighted MRI inspection following gado-
linium (Gd) enhancement [2].
Current MRI technologies are elucidating the substan-

tial involvement of axonal degeneration with increasing
disability parameters [5], previously difficult to define.
High resolution diffusion tensor imaging (DTI) has been
used in a rat model of experimental autoimmune en-
cephalomyelitis (EAE), generating data which support
the contention that significant axonal damage and loss
can occur at some distance from the primary inflamma-
tory lesion, strongly correlating with disability [6]. Alter-
ations in DTI measurements are also well documented
in MS patients [7]. Two main parameters that are dis-
turbed in MS patients are mean diffusivity (a quantita-
tive metric of water diffusion) and fractional anisotropy
(prevalence of diffusivity along one direction) [8]. In-
crease in mean diffusivity often reflects edema, axonal
and myelin loss [9] whereas reduction in fractional an-
isotropy indicates demyelination in MS [10]. Increased
mean diffusivity and decreased fractional anisotropy
were detected in NAWM of MS patients [11]. These
changes were more profound in SPMS patients com-
pared with CIS, RRMS and benign MS [12]. Moreover,
these diffusion abnormalities were also found in grey
matter of MS patients where axonal or neurodegenera-
tion are prominent, shown to be greater in SPMS com-
pared with other MS phenotypes [12]. Attempts have
been made to correlate diffusion alteration to EDSS,
however, the results of these studies remain controversial
[13-19]. Since EDSS is based on motor system criteria, it
can be suggested that motor-system specific DTI meas-
urement would have a high correlation with EDSS. In fact,
region-specific DTI measurements in MS patients have in-
dicated a greater correlation of DTI changes in motor
tracts with EDSS [20]. Importantly, it has been recently
proposed that a reduction in axial diffusivity measure-
ments of DTI correlate to extensive neuroinflammatory-
mediated axonal damage within the optic nerve following
acute optic neuritis, often a primary indicator of MS
[21]. Moreover, these investigators demonstrated that
protracted reduction in axial diffusivity measurements
correlated with pronounced retinal nerve fiber layer
(RNFL) thinning and multifocal visual evoked potential
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(mfVEP) amplitude loss at 12 months. Therefore, the ar-
gument for the use of axial diffusivity measures as a pre-
dictor of poorer visual outcomes in patients is justified
and may in fact be an excellent biomarker for neuropro-
tective therapies in MS that limit axonal degeneration.
Another non-conventional MRI approach utilized to

study axonal degeneration is the magnetization transfer
ratio, which has been demonstrated to show strong cor-
relations with the degree of myelin content, therefore
serving as an indicator of axonal degeneration [22]. Re-
cently, accurate imaging of axonal degeneration in vivo
has been established through optical coherence tomog-
raphy (OCT), which measures the thickness of the RNFL
[23]. It has been well established that Wallerian degener-
ation along retinal ganglion cell axonal fibers inevitably
reaches the RNFL, which is unmyelinated and so axonal
degeneration alone can be measured [24]. Given that
optic neuritis is a prevalent initial clinical finding in MS,
Klistorner et al., [24] have focused the clinical assess-
ment of the disease by imaging the optic nerve. These
investigators have shown a direct correlation between
decreased amplitude and increased latency (markers of
demyelination), measured with the newly developed
mfVEP and the reduction in RNFL thickness (markers of
axonal degeneration/loss). By performing these measure-
ments on patients either suspected to have MS or those
newly diagnosed post-acute optic neuritis, these investi-
gators showed that axonal degeneration/loss was a
prevalent finding in the context of neuroinflammation
and demyelination [24]. A very recent study by these in-
vestigators has shown that the temporal RNFL is thinned
in MS patients without previously presenting with optic
neuritis and this was correlated with inflammatory le-
sions in the optic radiations, detected by DTI [25]. Such
technology can provide high-resolution reconstruction
of the retina (an anatomical site targeted during the
early neurodegenerative process of MS). Therefore, OCT
may be a plausible method to predict axonal degener-
ation and hence neurological impairment in MS patients
with the added feature of studying the efficacy of neuro-
protective therapies during the course of the disease.
However, prospective multicenter studies have advocated
for strict quality control criteria be implemented since
boundary line errors due to poor scan quality and ring
scan de-centration are common issues of clinical dis-
agreement [26,27]. This has sparked the implementa-
tion of essential quality control criteria, identifiable as
“OSCAR IB” (see [26]) and brought about debate of its
clinical validity as an imaging biomarker purely on
protocol and generation of artefacts. The clinical validity
of OCT relies heavily on its inability to be the arbiter of
CNS tissue injury and in particular since there still exist
contradictory findings related to its ability in differentiat-
ing between the various subtypes of MS [27].
A means by which the degree of axonal degeneration
may be studied involves the use of magnetic resonance
spectroscopic (MRS) imaging. MRS allows for the detec-
tion of changes in metabolites such as N-acetyl aspartate
(NAA), a marker of axonal integrity [28]. Reduced levels
of NAA can be interpreted as potentiated axonal damage
during the course of neurological diseases that involve
axonopathy [28]. Whole brain MRS has successfully
shown significant reduction in NAA and NAA/Creatine
(NAA/Cr) ratio in CIS and RRMS compared with nor-
mal healthy controls [29-31]. However, these changes
were not correlated with EDSS, limiting the clinical util-
ity of these data. Reduction in NAA and NAA/Cr ratio
was found in normal appearing white matter (NAWM)
of RRMS and SPMS and interestingly, these changes
were correlated with EDSS [32-39]. Importantly, it was
found that the reduction in NAA levels demonstrated
within NAWM of frontal and parietal brain areas were
more evident in progressive manifestations of MS than
RRMS [39]. Furthermore, studies have demonstrated
that the reduction in NAA levels was more significant in
T1 hypointense Gd-unenhancing lesions than acute le-
sions and no significant relationship between T2 hyper-
intense lesions with NAA levels [35-38]. These studies
reflect the clinical relevance in measuring altered NAA
levels during the course of MS as a biomarker for axonal
damage in NAWM and both acute and chronic inflam-
matory lesions.
However, the MRS signal obtained for NAA may not

necessarily correlate with tissue atrophy and axonal
damage per se. In fact measurements obtained from the
corpus callosum of patients with CDMS, via the sensitive
diffusion fractional anisotropy, could demonstrate re-
duced size which correlated with patient EDSS but no
such correlation could be seen with reduced NAA levels
relative to tissue water [40]. Furthermore, while the
MRS analysis from the spinal cords of patients primarily
with SPMS clearly demonstrated reduced NAA levels
with excellent correlation to only moderate EDSS and
tissue atrophy [41]. Despite these encouraging findings,
no statistically significant reduction in NAA levels could
be attributed to NAWM areas in the frontoparietal cor-
tices of these patients. It is also worth noting that al-
though a 12-month longitudinal study was performed to
evaluate the neuroprotective efficacy of interferon beta
therapy, no restoration in NAA/Cr ratio could be ob-
served in RRMS patients despite a reduction in CNS in-
flammatory lesions and relapse rates [42]. It is also not
uncommon for NAA levels to be restored in RRMS in
the lesion core and NAWM [43,44]. A further confound-
ing factor to the limitation of NAA levels as a measure
of axonal integrity is that fact that it is more likely a
marker of neuro-axonal energy dysfunction, with an
abrogated electron transport chain resulting in the
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plummeting levels of NAA [45]. Therefore, outside the
added technical issues of accurate measurement [46], its
pathobiological relevance as a predictive biomarker is still
in question partly due to the heterogeneity of patient co-
horts and the limited multicenter assessments performed.
However, these imaging techniques have also been

used to study cortical adaptive functions in patients with
RRMS, SPMS and PPMS [47,48]. In the initial disease
presentation (RRMS), there seems no (or slight) reduction
in NAA levels, however, a prominent reduction in NAA
levels can be captured during progressive MS [47,49]. In
accordance with progressive MS, changes in NAA levels
within cortical grey matter were correlated with EDSS,
auditive selective attention and cognitive performance
[48,50,51]. Overall, changes in NAA in both NAWM
and cortical grey matter can be strongly linked with
physical disability. Indeed, a longitudinal therapeutic study
of glatiramer acetate (FDA-approved disease modifying
drug, Copaxone) treatment for RRMS, demonstrated par-
tial recovery of NAA/Cr ratio [52]. Furthermore, an amal-
gamation of DTI and MRS using a 7 tesla magnet allowed
for a more sensitive measurement of axonal damage
within NAWM regions of the corpus callosum, demon-
strating a clear reduction of NAA/Cr ratio, thereby sup-
porting NAA reduction as a biomarker for to axonopathy
during the course of MS [53].
As axonal degeneration can directly correlate with dis-

ease progression, a reliable prognostic biomarker for MS
must target the detection of clear, reproducible axonal
changes. Even though demyelination is a pathognomic
feature of MS, a recent study has identified patients
that exhibit a normal baseline MRI but present clinic-
ally with optic neuritis, have eventually manifested
CDMS [54]. Demyelinating lesions, as detected through
imaging techniques, cannot be a reliable diagnostic tool
for MS. Although the levels of NF-H in the CSF, along
with MRS measurement of NAA, are promising bio-
markers of axonal damage during the clinical progression
of MS, a combination of MRI (to detect demyelinating le-
sions) and MRS (detection of axonal changes) can be a
powerful diagnostic and prognostic tool for nascent MS
findings and progressive disease.

Molecular biomarkers: we are not there yet
Detecting the presence of neuron-specific proteins in
the CSF can be a powerful diagnostic/prognostic tool
during MS, only if these proteins are shown to be dir-
ectly correlative to the pathological sequelae of progression,
beyond a causal association. Although lumbar puncture is
considered as a safe method of obtaining CSF samples, its
invasive nature, with requisite continuous sampling, is a
limitation for the development of potential prognostic bio-
markers of its incorporation in any clinical research study
[55]. Despite this limitation, studies that have implemented
CSF collection from patients during the progression of
their MS have uncovered elevated levels of NF-L, a po-
tential biomarker for axonal damage and a possible
prognostic measure of progressive MS (Figure 1) [56].
The major drawback of these studies is the disparity in
findings amongst specific patient groups with variable
neurological presentations and tissue injury, bringing in
to question the reproducibility of CSF NF-L levels as
phenotypic biomarker.
As neurofilament is an integral protein that forms the

axonal cytoskeleton, detection of neurofilament and its
breakdown peptides within the CSF or serum can pre-
dict definitive axonal damage in situ. For instance, ele-
vated levels of NF-L have been detected in CSF samples
from individuals presenting with CIS which have subse-
quently progressed to CDMS [57]. More specifically in
CIS, NF-L levels were increased when compared with
control CSF samples obtained from patients with neuro-
psychiatric diseases of non-inflammatory etiology [58].
These elevated NF-L levels in the CSF were observed to
be even greater in progressive MS or during relapse than
those present in stable RRMS [59,60]. Circulating NF-L
antigens in the CSF have also been postulated to trigger
further autoimmunity against axons [61,62], experimen-
tally illustrated through the immunization of mice with
NF-L, which developed a progressive form of MS (pre-
dominant axonal damage with increased grey matter
pathology) (Figure 1) [61,62].
The other major isoform, neurofilament heavy chain

(NF-H), has also been found to be elevated in the CSF of
all clinical MS types compared with normal healthy con-
trols [63]. In particular, elevated levels have been reported
in CIS with direct comparisons to neuropsychiartric dis-
eases of non-inflammatory etiology [58], and these changes
were correlated with declining EDSS [63]. These results
emphasize that the level of NF-H in the CSF may relate to
clinical disability. In comparison to NF-L, change in the
CSF level of NF-H would appear to be more prominent in
progressive MS [56]. However, again the major problem
here is the confounding variable nature of the immuno-
assay results detecting NF-H levels observed from varying
patient groups and different laboratories, rendering the
data as possibly spurious [56].
It has recently been demonstrated that the immunother-

apeutic, natalizumab, was shown to limit the rise in NF-L
CSF levels during relapsing MS [64-66]. In addition,
serum NF-H levels were shown to decrease during SPMS,
when patients were treated with Na+ channel blocker,
lamotrigine (based on serum lamotrigine adherence) [67].
The serum levels of NF-H were shown to correlate with
clinical disability, EDSS and MRI cerebral atrophy [67]
which further supports the notion that serum NF-H levels
can manifest during disease progression and more likely
in chronic MS (Figure 1). The possibilities of these



Figure 1 Sequestered neurofilament and anti-neurofilament as potential prognostic biomarkers for progressive MS. Both NF-L and NF-H
can be released from CNS parenchymal cells into the CSF during clinical course of MS. The CSF levels of NF-L are consistently high throughout
the disease progression, whereas the CSF levels of NF-H increase upon disease progression. Free NF-L and NF-H can be recognized by dendritic
cells (antigen presenting cells) culminating in a further cycle of inflammation. These cells can therefore, activate B cells and T helper (TH) cells.
Activated B cells can release autoantibodies against both NF-L and NF-H, which can potentiate axonal damage. The CSF levels of anti-NF-L and
anti-NF-H increase during progressive MS, whereas the serum levels of anti-NF-L may decrease.
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clinically relevant studies are that both the NF-L and NF-
H levels are stable molecules with excellent predictive na-
ture of clinical outcome with regard to progression and
quite possibly ongoing axonal damage following disease
modifying therapeutic interventions. Despite this enthusi-
asm, MS patients on natalizumab still progress and the
cerebral volume measurements in the lamotrigine trial did
not advocate for neuroprotection, suggesting that we still
await definitive evidence that NF-L and/or NF-H are clin-
ically relevant biomarkers of axonal damage and predictive
of MS progression.

Mechanisms of axonal injury and degeneration during MS
Energy-dependent mechanisms of axonal degeneration
Following demyelination, the substantial energy demands
placed upon axons, increase the stationary size of mito-
chondria and the speed of their transport along axonal mi-
crotubules [68]. Recent live in vivo imaging techniques
applied in MOG35–55-EAE-induced mice revealed func-
tional defects in intra-axonal mitochondria occurring even
before prominent demyelination. This suggests that axonal
mitochondria may be undergoing substantial damage prior
to demyelination, indicating that an energy imbalance in
axons may be the driver of the axo-glial degenerative
phase. Recently, comprehensive reviews have covered the
experiments that outline the unique mitochondrial deficits
along with the generation of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) during the dis-
ease course of EAE leading to compromised axonal integ-
rity [69,70] and so will not be discussed here.
Of particular importance to cortical atrophy attributed

to MS pathology, whole-genome microarray analysis
performed on post-mortem motor cortex tissue obtained
from individuals who had exhibited SPMS, have demon-
strated the down-regulation of neuronal-specific mito-
chondrial and cox genes, which encode for functional
mitochondrial complex I and III activity [71]. In accord-
ance with this finding, cortical chronic-active grey mat-
ter lesions also exhibited decreased complex IV activity
along with multiple deletions of mitochondrial DNA
[72]. On the other hand, in chronic-inactive lesions, in-
creased complex IV activity was found [73], collectively
indicating that there may be compensatory mechanisms
during oxidative damage in cortical neurons [74]. This is
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in keeping with the increased mitochondrial density and
complex IV activity observed in remyelinated axons from
MS shadow plaques and in an ethidium bromide model
of demyelination/remyelination [75] when compared
with normally myelinated axons [75]. What this study
highlights is that demyelination may cause delayed action
potential propagation, possibly increasing axonal energy
demand. However, when this energy demand exceeds
axonal ATP production, it may undergo hypoxic-like
axonal degeneration. Response to this state of hypoxia in
axons may manifest as mitochondrial dysfunction due to
an increase in NADPH oxidase or iNOS [2].
Dysregulation of mitochondrial transport can also se-

verely impact the energy balance in axons, which may drive
axonal degeneration. One scenario by which axonal degen-
eration may be initiated through mitochondrial dysfunc-
tion can be derived from the alterations exhibited in the
histone deacetylases (HDACs). For the past decade, many
groups have reported that HDAC inhibition was neuropro-
tective in MS (for review, see [76]). It was demonstrated
that intraperitoneal administration of trichostatin A, a glo-
bal inhibitor of HDACs, during MOG35–55-induced EAE
could reduce disease severity. Furthermore, immunohisto-
chemical analysis revealed that a higher axonal density in
lumbo-sacral spinal cords could be demonstrated only in
the trichostatin A treated group [77]. The molecular mech-
anism behind HDAC-mediated axonal degeneration was
partially revealed by Kim et al., [78] who suggested that
cuprizone-induced axonal damage can be triggered by
Ca2+-dependent export of class I HDAC1 to the neur-
onal cytosol. This caused binding of HDAC1 with α-
tubulin and kinesin motor proteins (KIF2A and KIF5),
which were only detected in demyelinated areas, leading to
an impairment of mitochondrial transport in neurons [78].
The same group also demonstrated a co-localization of
cytosolic HDAC1 and SMI-32 in axons within demyeli-
nated white matter, observed in human MS brain tissue
[78]. As HDAC recruitment was found to be essential dur-
ing remyelination upon lysolecithin-induced demyelination
[79], the molecular mechanisms underlying HDAC inhib-
ition mediated neuroprotection during neuroinflammation
must be thoroughly characterized prior to clinical transla-
tion since they may target the myelin repair process.
Sirtuins (SIRT), class III family members of HDAC,

have been raised as one of the candidate molecules that
may serve as a therapeutic target to treat axonal degen-
eration in MS. Intravitreal administration of SIRT1 acti-
vator, SRT647 and SRT501, was shown to ameliorate
retinal ganglion cell loss in PLP139–151-induced EAE
within the SJL/J mouse model [80]. The same group also
administered an oral dose of resveratrol, another SIRT1
activator and demonstrated neuroprotection in the same
EAE model. Normal retrograde vesicular transport within
retinal ganglion cell axons in mice treated with resveratrol
was confirmed by fluorogold uptake assay and there
was no modulation of neuroinflammatory or remyelina-
tion mechanisms upon resveratrol treatment [81]. Fur-
ther investigation of the mechanism responsible for
axonal integrity suggested that the neuroprotection ex-
hibited by resveratrol in retinal ganglion cells during
neuroinflammation may have been derived through the
attenuation of oxidative stress by increasing the expres-
sion of the mitochondrial enzyme, succinate dehydro-
genase and promoting deacetylation of the peroxisome
proliferator activated receptor co-activator 1-α (PGC-1α)
[82]. Overexpression of human SIRT1 in neurons of
MOG35–55-induced EAE mice demonstrated neuropro-
tection with reduced inflammation and demyelination.
Increase in brain-derived growth factor (BDNF) was
seen in SIRT1 overexpressed neurons, which may indi-
cate that SIRT1 overexpression can restore BDNF func-
tion, subsequently facilitating axonal protection [83].
Although SIRT1 activation or overexpression in neu-
rons can be neuroprotective during neuroinflammation,
possible effects of SIRT1 on other cell types during de-
myelination or neuroinflammation must be vigilantly
investigated.
A plausible reason to investigate other neural lineages

may be as a result of the recent study by Rafalski et al.,
[84] which implied that SIRT1 inactivation specifically
in neural stem cells, shown using a nestin-Cre/loxP-
sirt1 transgenic model, can improve remyelination upon
lysolecithin-induced experimental demyelination as well
as during MOG35–55-induced EAE [84]. As plasma levels
of SIRT1 were found to be increased in MS patients when
compared with non-neurological disease controls, it is also
postulated that soluble/circulating SIRT1 is an adaptive
response during MS and it may play an important role in
disease pathogenesis [85]. Therefore, a more comprehen-
sive understanding of the molecular mechanism governing
axonal preservation achieved through the activity of
SIRT1 must be achieved to classify it as a neuroprotective
agent of therapeutic potential.

Current ion channel theory in axonal damage
The clinical use of sodium channel blockers to treat spe-
cific MS symptoms such as carbamazepine (the initial
class of blockers) has fuelled interest in the mechanism
by which persistent sodium influx can induce axonal in-
jury during the symptomatic phase of MS. It has been
posited that periods of remission from MS symptoms,
may in-part, be related to a restoration of action poten-
tial conduction by Na+ channels along denuded axons
[86]. Despite a lack of electrophysiological data to sup-
port this hypothesis, following demyelination, denuded
axons can increase their density and number of Na+

channels in MS lesions [87]. Increased numbers of Na+

channels in demyelinated axons may produce an increase
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in axonal membrane potential oscillations [88], thereby
potentiating neurotoxic levels of intra-axonal Ca2+, cul-
minating in axonal degeneration [89]. ROS and RNS have
been known to exert damage to axonal mitochondria with
the consequential diminished energy supply to the axon
[74]. This energy failure involves the accumulation of large
quantities of Na+ within the axon due to the failed Na+

channels and persistent currents [90]. In response to this,
the Na+-Ca2+ exchanger, which normally facilitates Na+

influx, instead functions in reverse mode to offset the ris-
ing levels of Na+ within the axon. However, the elevation
of intracellular Ca2+ levels, a consequence of the failure in
the ion exchanger, leads to the activation of a common
pathway precipitating axonal degeneration [90] (Figure 2).
Despite this tantalising hypothesis, no direct experimental
evidence exists for this ion channel mechanism to be op-
erative during the progression of MS symptoms.
Figure 2 Activated microglia and the redistribution of ion channels c
source of nitric oxide (NO), glutamate (Glut) or various proteases. Released
axonal mitochondria, leading to an imbalance in the energy demands/sup
channels (Nav) dispersed along denuded axons, can potentiate persistent N
of the Na+/Ca2+ exchanger functions in reverse, thereby cytotoxic levels of
Over the past few years, Stephen Waxman and col-
leagues have led the field in identifying how Na+ chan-
nels can initiate axonal degeneration in white matter
tracts of the spinal cord of murine EAE models [91,92].
Notably, they have shown that the increased expression
of Nav1.6 and Na+/Ca2+ exchanger is localized along
damaged and demyelinated axons within many spinal
cord tracts of EAE mice [89]. Mitochondrial dysfunction
has been implicated in the reduction of axonal ATP
levels, thereby rendering the Na+, K+ -ATPase defective,
compromising the ability for the axon to set up appro-
priate Na+ transmembrane gradients and inevitably initi-
ating the axonal degenerative process [93]. Blocking Na+

channels through the use of low dose TTX, phenytoin,
lidocaine and flecainide, or blocking the Na+/Ca2+ ex-
changer through the use of bepridil has been successful
in limiting the neurotoxicity after the induction of EAE
an potentiate axonal injury during MS. Activated microglia can be a
free radicals, excitotoxic glutamate and various proteases can damage
ply of axons. This along with the increased voltage-gated sodium
a+ influx. To compensate for this redistribution, increased expression
Ca2+ can mediate axonopathy.
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[92,94-97]. These neuroprotective regimes tested in EAE
suggest that one of the major mechanisms involved in
axonal degeneration during neuroinflammatory diseases,
is the persistent influx of Na+ into the axon ultimately
leading to neurotoxic levels of Ca2+ (for review see [86]).
Not surprisingly, the therapeutic rationale for the treat-
ment of neurodegenerative mechanisms associated with
the acute and chronic sequelae of MS is gaining momen-
tum, particularly since the outcome is to limit disability.
Limiting axonal degeneration has the added benefit of
possibly prohibiting the spread of further oligodendro-
cyte and myelin damage proximal and distal to the initial
axonal lesion due to the maintenance of reciprocal
growth factor-dependent mechanisms, with the potential
for profound neurological benefit [2]. These mechanistic
dissections of Na+ channel blockers during neuroinflam-
matory disease have provided an evidence-based recruit-
ment of patients in either PPMS, SPMS or RRMS for
clinical phase trials in the US and the UK [98].
Another ion-channel blocking strategy set out to target

Acid-sensing ion channel-1 (ASIC1), which is permeable
to Na+ and Ca2+ and can contribute to the excessive ac-
cumulation of intracellular ions. Both genetic knockout
and pharmacological blockade of this ion channel was
shown to be neuroprotective in EAE-induced mouse
spinal cord tissue [99]. As this ion channel was upregu-
lated in MS lesions, in particular degenerative axons
overexpressing βAPP [100], these studies have thus lead to
the clinical translation of amiloride (blocker of ASIC1),
with the PPMS treatment group achieving neuroprotec-
tion, confirmed by DTI and MRI [101]. This approach is
promising and it is now currently in a phase II clinical trial
for optic neuritis in the UK (ClinicalTrials.gov identifier:
NCT01802489). However, the data is preliminary with a
very small patient group analysed and loose criteria set as
biomarkers for axonal damage such as axial diffusivity and
altered rates in brain atrophy measured in treated patients
over time. Furthermore, the data did not exclude a re-
duction in inflammation as the primary mechanism of
neuroprotection again without achieving discrimination
whether the amelioration of injurious intracellular
axonal levels of Na+ and Ca2+ were the targets of
amiloride treatment.
Although ion channel blockade holds substantial prom-

ise to limit axonal damage in MS, studies have reported
significant worsening of disease upon withdrawal of spe-
cific ion channel blockers, a potentially fatal contraindica-
tion [96,98]. For example, it was demonstrated that
administration of Na+ channel blockers during EAE sig-
nificantly reduce clinical EAE scores, however, upon with-
drawal of these drugs, marked increase in clinical severity
were observed which were associated with a burst of in-
flammatory infiltrates within the CNS [96]. This may be a
result of the drug modulating the Na+ channels immune
cells, thereby exerting its neuroprotective effects via
immunomodulation and not directly upon CNS axons as
hypothesized. Furthermore, the Phase II clinical trial for
lamotrigine (Na+ channel blocker), on secondary progres-
sive MS patients showed exacerbation in motor function
abnormalities, which were reverted upon a reduction in
the lamotrigine dose [98]. These results clearly indicate
the need for a sophisticated understanding of exact mech-
anism of action for such ion channel blockers. As other
cell types do express ion channels, distinction of the mod-
ulatory effects of these partial blockers in immune cells
and neurons would provide a more comprehensive under-
standing for their mechanisms of action. A very recent
study by Al-Izki et al., [102] demonstrated a novel Na+

channel blocker (CFM6104) specifically targeted the
early lesion (inflammatory penumbra) during EAE chal-
lenge in Biozzi ABH mice possibly through changes in
p-glycoprotein [103], which was shown to be reduced
both in EAE and MS lesions [102]. This novel drug re-
duced maximum severity of EAE disease score and im-
proved motor-function during remission [102]. The
authors have also found that there was no significant
immunosuppression with this drug during EAE [102].
Although this study differentiated immunomodulation
and neuroprotective drug actions, one should not over-
look its possible rebound effects [96]. Furthermore, in
the MOG35-55 EAE model a direct immunosuppressive
role for the non-specific Na+ channel blocker Phenytoin
highlighted caution for its use in Clinical Trials as the
specific cellular target remains clearly unresolved [96].
Therefore, thorough basic science studies are required
to clearly distinguish the mechanisms of drug action
and to identify possible side/rebound effects before its
clinical translation.

Cortical demyelination and atrophy – mechanisms
governing progressive MS
Retrograde neurodegeneration in demyelinating grey
matter lesions within the corpus callosum and hippo-
campus during neuroinflammation has recently been
shown in a marmoset model of EAE as indicated by in-
creased immunostaining of βAPP and decreased neuronal
size and number [104]. Furthermore, increased SMI-34
(hyperphosphorylated NF-H) immunostaining was seen in
demyelinating grey matter of the cerebral cortex of MS
patients [105]. Attempts have been made to correlate
these pathological changes with clinical disability (EDSS
score), matching neuronal loss, axonal damage, and syn-
aptic loss in demyelinating grey matter of hippocampus
to memory loss [106-108]. Upon 12 weeks of cuprizone-
mediated experimental demyelination, epileptiform spikes
were measured by EEG/video monitoring [109]. Further in-
vestigations revealed extensive demyelination and Fluoro-
Jade-C immunostaining in the hippocampus of these
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animals with long-term treatment of cuprizone [109].
MOG35–55-induced EAE within a cohort of thy1-YFP
reporter mice revealed that significant reductions in in-
hibitory neurons along with pre-synaptic puncta ob-
served within demyelinating grey matter throughout
the hippocampus may be the reason for the reduced
spatial learning exhibited by these mice [110]. These
animal experiments have led to clinicopathological in-
vestigations of cortical demyelination and ensuing neu-
rodegeneration in MS patients. Significant neuronal
loss and reduction in size of neuronal somata were re-
ported to present within the chronic demyelinated hip-
pocampal grey matter of progressive MS brain tissue
[106]. Moreover, a microarray-based gene expression
study of demyelinated hippocampi revealed that there
was a significant decrease in genes that are involved in
axonal transport [108]. A profound deficit in antero-
grade axonal transport has been postulated from data
generated in this study which demonstrated reduced
mRNA levels of the kinesin gene family; KIF1A, KIF3A,
KIF15, KIF5B, KIF5C and kinectin (KTN1) in demyelinat-
ing hippocampi of MS patients [108]. Decreased immuno-
staining of KIF1A was also documented for these lesions
and may suggest a reduced learning enhancement/plasticity
associated with hippocampal degeneration/synaptic integ-
rity [111]. In addition, a potential impairment of retrograde
transport was reflected by the alteration of mRNA levels of
dynein molecules; DYNC1L12, DCTN1 and DNAH17
[108]. These results strongly advocate for a correlation be-
tween cortical demyelination and neurodegeneration, po-
tentially representing memory deficits in MS patients.
Concerning the mechanisms of cortical demyelination

in MS, the literature provides several likely hypotheses.
Bruce Trapp’s group support the contention that alteration
in glutamate uptake from hippocampal demyelination can
cause neuronal energy imbalance thereby potentiating
neurodegeneration [108]. A whole genome microarray ap-
proach revealed to these investigators that a decreased ex-
pression of glutamate receptors such as AMPA1, AMPA2
and AMPA3 in demyelinating hippocampi, may indicate
an alteration of glutamate homeostasis [108]. Further bio-
informatics analysis by the same group revealed that there
were increased miR-124 levels, encoding for AMPA2
and AMPA3 in demyelinated hippocampi of MS pa-
tients. These changes could be reverted upon remyeli-
nation, hence, supporting the idea that myelin can
influence glutamate homeostasis and demyelination can
drive secondary neurodegeneration [112].
There exists evidence to suggest that the initiation of an

autoimmune response can occur via the recognition of
the glycoprotein autoantigen, contactin 2, on/near the
endothelial cells of the grey matter by autoantibodies, type
1 helper T cells (Th1) and type 17 helper T cells (Th17)
[113]. It is this process which enables the opening of the
BBB, thereby allowing anti-myelin antibodies to gain ac-
cess to the grey matter. Studies of PPMS have established
a correlation between the degree of meningeal inflamma-
tion and cortical demyelination. This inflammatory state is
believed to comprise increased concentrations of myelino-
toxic and neurotoxic substances which in turn drive sub-
pial pathology and demyelination, resulting in a greater
disease severity [114]. Moreover, these investigators noted
that monitoring brain atrophy over a 2-year period was an
accurate prognostic indicator of disease progression. Fur-
ther evidence of an immune response in the meninges as
a pathophysiological mechanism of grey matter pathology
is the presence of ectopic B cell follicle-like structures at
these sites [115]. The extra-parenchymal structures are
most commonly situated in the deep in-foldings of the
cerebral sulci, and their numbers/extent are purported to
be proportional to the size of cortical lesions present
[116]. A large percentage of antigen experienced B cell
clones present in the meningeal aggregates of 2/3 of MS
brains have also been observed to be present in the corre-
sponding parenchymal infiltrates [117]. The follicles are
comprised of aggregates of B cells, immunoglobulins (IgA
and IgG) and IgM-positive plasma cells. Identified by im-
munohistochemical staining for proliferating B cells, these
follicles vary in size and distribution throughout the brain
[115]. The study by Magliozzi and colleagues reveal the
cytotoxic effects that these B cell aggregates have on cor-
tical tissue. Essentially the follicles contain CD8-positive
T-cells expressing interferon-gamma (IFN-γ) which cause
cortical pathology either directly by cytotoxicity or indir-
ectly by the induction of microglial cell activation [118].
Furthermore, it is evident that the CD8-positive cells in
these follicles have the capacity to cause greater damage
than those in the grey matter itself [118]. In a very recent
development an animal model mimicking meningeal in-
flammation and cortical demyelination has been achieved
through the stereotactic injection of tumor necrosis factor
(TNF) and IFN-γ into the subarachnoid space following
recombinant MOG immunization [119]. The data from
this particular study implicates meningeal inflammation as
a plausible initial pathology during neuroinflammation
[119]. However, a relationship between meningeal inflam-
mation and axonal pathology remains to be verified.

Integral axonal proteins: the role of microtubule transport
in MS/EAE
Amyloid precursor protein (βAPP) It is known that
failure in axonal transport is one of the main causes of
Wallerian degeneration [120]. Axonal transport deficits
are often suggested to govern the pathologies which
characterize classic neurodegenerative disorders, with
Alzheimer’s disease as the archetypal pathology with
dystrophic axons from such catastrophic dysfunction of the
molecular transport machinery [121]. The dysregulation of
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axonal vesicular transport within long myelinated fibers
of the CNS in MS patients is a candidate mechanism
for the induction of axonal degeneration possibly sharing
this feature with other neurodegenerative conditions. The
theory gathers momentum when one investigates a clas-
sical histopathological marker of axonal damage, the accu-
mulation of βAPP, which is normally not detectable by
immunostaining as it is transported fast enough along
axons if their integrity is maintained. Immunohistochemi-
cal staining of βAPP however is intense in swollen axons
of chronic-active MS lesions and is now widely accepted
as marker for impaired axonal transport to demonstrate
axonal damage in MS [122].

Collapsin response mediator proteins (CRMPs) CRMPs
are a family of neuronal phosphoproteins [123] which
regulate microtubule assembly as well as anterograde
vesicular transport of important growth-related molecu-
lar cargo along neuronal microtubules [124,125]. CRMP-
2 (the most well defined of the CRMPs) has already
been shown to be phosphorylated by Cdk-5 at Ser522
[126,127], determined as the priming kinase, glycogen
synthase kinase 3β (GSK-3β) at Thr514/509/Ser 518
[128,129] and also Rho kinase at the Thr555 position
[130,131], all of which can mediate neurite retraction.
Such phosphorylation disrupts the association of CRMP-2
with tubulin heterodimers so that tubulin is not able to be
Figure 3 Disturbed interaction between CRMP-2 and kinesin light cha
molecules such as α- and β-tubulin heterodimers anterogradely with the a
and this phosphorylation inhibits its binding to molecules impairing axona
the disassembly of polymerized microtubules. During MS, increased free ca
leading to the failure of axonal transport and inevitably neurodegeneration
lysates from both non-neurological disease control (NNDC) and MS patient
anti-kinesin light chain (KLC) antibody. (Bottom) Western immunoblot for K
(5% input of immunoprecipitation sample) using the monoclonal anti-KLC
(after immunoprecipitation) from white matter lysates of NNDC and MS (n
cleavage or phosphorylation of CRMP-2 during MS culminating in the inter
and kinesin light chain, leading to microtubule disassembly.
transported to the plus ends of microtubules for assembly,
impeding directional growth of the neurite [125] (Figure 3).
Importantly, phosphorylation of CRMP-2 reduces its
binding to the kinesin-1 microtubule-related motor
protein [132]. Since kinesin-1 is involved in anterograde
vesicular axonal transport of molecules important for
synaptic integrity and plasticity (e.g. BDNF receptor,
TrkB) at the distal ends of axons [132], phosphorylation
of CRMP-2 is expected to alter microtubule dynamics.
In terms of a pathogenic role attributed to the phos-

phorylated forms of CRMP-2, there is a clear link with
the neurodegenerative processes of Alzheimer’s disease
(Aβ-mediated phosphorylated CRMP-2) [133,134]. Re-
cently, our lab showed that a Rho kinase II- specific
phosphorylated form of CRMP-2 has profound import-
ance in EAE disease progression, where substantial in-
crease in the degeneration of axons within the spinal
cord and optic nerve could be observed. We found that
the pThr555CRMP-2 form demonstrated during the
peak stage of EAE can be reduced through the adminis-
tration of a function blocking antibody against Nogo-A
(potent neurite outgrowth inhibitor) or alternatively,
through the overexpression of the phosphomutant form
of CRMP-2 by using an adeno-associated virus serotype
2 gene delivery system, could individually reduce the
markers of degenerative axons appearing [135]. Our la-
boratory is now specifically targeting the phosphorylation
in in MS. Tetrameric CRMP-2, may act as a cargo protein transporting
id of kinesin-1. CRMP-2 can be phosphorylated or cleaved during MS
l transport. Inhibition of α- and β-tubulin heterodimers can promote
lpain may potentiate cleavage of CRMP-2, impairing its function,
. (A) (Top) Immunoprecipitation of CRMP-2, of brain white matter
s, followed by western immunoblot analysis using the monoclonal
LC from the same brain samples loaded pre-immunoprecipitation
antibody. (B) Densitometric quantification (AU) of total KLC and KLC
= 3; **P < 0.01, student’s t-test). (C) Concept diagram illustrating either
ference of the interaction between CRMP-2 with tubulin heterodimers



Lee et al. Acta Neuropathologica Communications 2014, 2:97 Page 11 of 16
http://www.actaneurocomms.org/content/2/1/97
of CRMP-2, which may be a plausible therapeutic regime
in the treatment of progressive MS.
Calpains as de-stabilizers of the neuronal cytoskeleton in
the MS model
Calpain-mediated cleavage of integral myelin proteins,
including myelin basic protein, has been proposed as a
prominent pathological mechanism leading to profound
demyelination during EAE disease onset and progression
[136]. Indeed, translational expression and activity of
calpain have been reported to increase in inflammatory
cells, activated microglia and astrocytes at the time of
onset of clinical signs during EAE [137,138]. More im-
portantly, targeted calpain inhibition in the nervous
system has been shown to reduce inflammation and de-
myelination in the CNS as well as the clinical signs of
EAE [139], suggested to be the result of attenuating the
peripheral immune response to the CNS [140].
Calpains are members of the highly conserved calcium-

dependent proteases capable of cleaving a vast array of
cellular proteins [141]. Calpains are of specific interest
in neurodegenerative disease since they can cleave
cytoskeletal-related proteins such as the spectrin [142],
tau [143], tubulin proteins and the CRMPs [144]. Since
Ca2+-influx and the release of intracellular Ca2+ stores
are plausible mechanisms by which axonal degeneration
is potentiated during CNS injury and disease [141], the
refractory transient increase in the deleterious calpains
can potentially cause cleavage of cytoskeletal proteins
and thus the collapse and degeneration of axons af-
fected by these intracellular changes.
Two major isoforms of calpains exist namely, calpain-I

(μ-calpain) activated at micromolar concentrations, and
calpain-II (m-calpain) activated at up to millimolar con-
centrations [145]. In EAE, calpain is increased in axons
due to the alteration of Na+ and subsequently Ca2+ in-
flux. The sustained activation of calpain can lead to
axonal degeneration, a hallmark of the pathophysiology
of EAE [146]. Preservation of axonal integrity in EAE
has been achieved by the administration of calpain-
specific inhibitors such as CYLA [139]. This inhibitor
can be synthesized by addition of cysteic acid (which can
be actively transported into the brain through those
mechanisms utilized by taurine to the leucyl-argininal
of leupeptin), effectively crossing the blood–brain bar-
rier [147]. Hassen and co-workers, [139], have recently
shown that administration of intraperitoneal CYLA
(2 mg daily) resulted in reduced levels of βAPP-positive
and Nav1.6-positive axons (markers of axonal degener-
ation) in spinal cords of MOG35–55-induced EAE mice
[139]. These data correlated with abrogated clinical
scores in the CYLA-treated EAE mice and argue for
the utilization of calpain inhibitors to limit axonal
degeneration during neuroinflammatory CNS lesion for-
mation, commonly characterized during MS pathogenesis.

Calpain and CRMP-2
There is now a more comprehensive argument for the
provision of calpain inhibitors in MS and related neuro-
logical conditions. CRMP-2 has been identified as a
common substrate for calpain-I during Wallerian de-
generation in vitro, and calpain-mediated cleavage of
CRMP-2 (Figure 3) may lead to its autophagic process-
ing [148]. Calpain is reported to cleave CRMPs follow-
ing ischemic brain injury in mice [149]. It cleaves
CRMP-4 in primary rat cortical cultures as a result of
either NMDA-induced excitotoxic insult or H2O2-
induced oxidative stress [150]. Zhang and colleagues
[151], have demonstrated calpain-mediated proteolysis
of CRMP-1, −2 and −4 following neurotoxin treatment
of primary cortical neurons and also following trau-
matic brain injury in the rat [151]. Hou and colleagues
[152], have also found that calpain cleaves CRMP-3 fol-
lowing excitotoxic insult in vitro and cerebral ischemia
in vivo. Interestingly, these investigators have shown
that the cleaved product of CRMP-3, translocates to
the nucleus and induces not only axonal retraction but
also neuronal death [152]. This group has subsequently
studied the expression patterns of all isoforms of CRMP
(CRMP-1 to 5) and the proteolytic activity of calpain
on CRMPs in ischemic brain injury, discovering that all
CRMPs were highly expressed in apoptotic neurons
[149]. Furthermore, synaptosomal CRMPs were found
to be more susceptible to calpain cleavage than cyto-
solic CRMPs [149]. The physiological significance of
this finding is unclear. However, it is possible that upon
cleavage, synaptosomal CRMPs in particular, play a sig-
nificant role in neuronal death with tantalizing implica-
tions to grey matter pathology in MS and clinical
progression [153].

Conclusion
Permanent neurological deficits in MS are governed by
CNS axonal degeneration of major fiber tracts but the
molecular mechanisms, which contribute to this dam-
age, are poorly understood. The major contributors to
axonal damage and loss may include: (1) axoplasm energy
depletion caused by mitochondrial injury elicited through
a hypoxic environment of sustained ROS and RNS, gener-
ated through activated microglia; (2) increased expression
of Nav1.6 and the Na+/Ca2+ exchanger, which mediate
cytotoxic levels of intra-axonal Ca2+ to compensate Na+

influx; (3) through the dysregulation of axonal transport
machinery which may include abnormal modifications to
the microtubule-associated proteins such as CRMP-2,
thereby culminating in catastrophic damage of the axonal
cytoskeleton. As current immunomodulatory therapies
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are limited in their ability to reduce relapses and in many
ways ineffective during SPMS or PPMS, future therapies
must be designed to halt the progression of clinical sever-
ity. From pre-clinical and clinical data, it is becoming evi-
dent that axonal injury is directly related to clinical
progression. Therefore, ameliorating axonal damage dur-
ing MS can limit the severity of disease to enhance the
quality of life for MS sufferers. However, the mechanisms
of potential therapy targeting axonal degeneration must
be clearly defined with the potential effects upon non-
neuronal cells, documented to ensure disease stage speci-
ficity without contraindications for MS patients.
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