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Angiogenesis in multiple sclerosis and
experimental autoimmune encephalomyelitis
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Abstract

Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following
Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The
increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response
in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental
model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular
remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory
factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since
VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation
and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and
oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the
preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual
fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic
stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect
of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion
of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should
be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
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Angiogenesis in MS
Multiple Sclerosis (MS) is an autoimmune demyelinating
disease of the Central Nervous System (CNS) whose cause
remains elusive. An inappropriate recognition of an autoan-
tigen on myelinated nerve fibers recruits macrophages and
lymphocytes in the CNS, leading to white and grey matter
demyelination. Other pathological hallmarks of the disease
are gliosis, axon degeneration and remyelination attempts.
An altered Blood–Brain Barrier (BBB) permeability,

with a subsequent transmigration of lymphocytes and
mediators into the CNS, is an early event in the MS
pathogenesis. Local breakdown of BBB has been dem-
onstrated, as gadolinium-DTPA enhancement (gd.e.) on
T1 weighted magnetic resonance imaging (MRI), to
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precede other clinical signs and to be a prominent event
in disease progression [1,2]. BBB incompetence has also
been documented as an altered expression of endothelial
tight junction proteins, changes of vascular basement
membrane (BM) molecules and pericytes in acute and
progressive MS forms [3-10]. Localized BBB disruption
could precede the development of typical demyelinating
lesions associated with inflammatory cuffs around veins or
venules [1,2,11,12]. However, macrophage infiltration also
seems possible across a preserved BBB for humoral factors
(marked by the absence of gd.e.), as already demonstrated
in MS [13,14] and EAE [15]. The increased BBB perme-
ability is primarily, but not only, driven by the release of
Vascular Endothelial Growth Factor (VEGF)/vascular per-
meability factor [16], that also regulates vessel growth and
is chemotactic for monocytes and lymphocytes, promoting
neuroinflammation [17-19]. Other BBB permeability pro-
moting factors such as interferon-γ (IFN-γ), tumour
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necrosis factor-α (TNF-α) and interleukin-1 (IL-1) have
been described in MS [reviewed in 7] (Table 1).
So-called sprouting angiogenesis, the formation of new

vessels from pre-existing ones, is a strictly controlled
process during tissue repair and regeneration to provide
the necessary oxygen and nutrients for an area with in-
creased cellular needs. Angiogenesis is a vital process in
growth and organ development; it is active in developing
human CNS [20] but quiescent in adult human brain
[21]. Endothelial cell proliferation and a consistent in-
crease of vascular networks due to angiogenesis have
been investigated and found in MS demyelinating lesions
only by two groups [22,23] and much remains to be
demonstrated about the regulation and significance of
angiogenesis in MS.
Increased angiogenesis is a common feature of several

neurological conditions, with detrimental effects as ob-
served in Alzheimer’s disease (AD) [24], Parkinson’s disease
(PD) [25] and brain tumours [26], whereas a beneficial ef-
fect of angiogenesis has been proposed in cerebrovascu-
lar ischemic and traumatic brain injury [27]. In MS
lesions and in surrounding normal-appearing white
matter (NAWM) and grey matter (NAGM), an angiogenic
response has been suggested to contribute to disease pro-
gression [28] or, alternatively, to remission after relapses.
Ever since the first descriptions of MS disease signs, the

vascular component has been acknowledged as an import-
ant element to understand the disease pathogenesis
[29-33]; breakdown of the BBB in MS lesions was first de-
scribed by Broman [34]. Acute and chronic demyelinating
lesions and even NAWM of MS patients show blood ves-
sels with a glomeruloid morphology [35], class II MHC
antigen expression, intramural fibrin, hemosiderin, and
Table 1 Reported angiogenesis-related changes in serum, CSF

Angiogenesis related molecules Serum

VEGF-A ↑ [12,59,255]

VEGF-D ↑ [256]

VEGF-R3 ↑ [256]

Angiopoietin-2 ↑ [256]

Basic FGF ↑ [12]

Endothelin-1 ↑ [85,184]

Nitric oxide and NOS ↑ [259]

TNF-α ↑ [261]

TGF-β ↑ [267]

↓ [268]

IFN-γ ↑ [270]

MMP-2 ↑ [271]

MMP-9 ↑ [271,274]

TIMP-1 ↑ [274]

sCD146
collagen deposition, vessel wall hyalinization, evidence of
thrombi and haemorrhages and iron accumulation [36],
all features consistent with angiogenesis and endothelial
cell proliferation [23,37].
One explanation of the angiogenic response seen in

NAWM may be an effect of the increased energy demand
for impulse conduction along excitable demyelinated axons,
together with a reduced axonal ATP production due to
mitochondrial dysfunction, both inducing a chronic state of
‘virtual’ hypoxia in chronically demyelinated axons [38].
Meanwhile, chronic inflammation itself is pro-angiogenic
and, in turn, VEGF is a pro-inflammatory factor.

Angiogenesis in EAE
A good animal model for MS is experimental allergic en-
cephalomyelitis (EAE). It can be induced by immunization
using antigens derived from myelin. These antigens elicit
an acute demyelinating process driven by T cells and mac-
rophages which can have a chronic relapsing course quite
similar to MS. Several reports indicate early BBB break-
down in the CNS of EAE [39-44]. Increased vessel density
has been documented in different experimental models,
including EAE induced in the mouse [40,45,46], guinea
pig [47-49], and Lewis rat during the relapse phase [50].
Figure 1 shows our results on EAE induced by MOG(35–55)

immunization in C57Bl/6 J cerebral cortex vasculature,
demonstrating an increased angiogenesis (cumulative vessel
length) as compared to control mice.
Boroujerdi and co-worker [40] demonstrated that vascu-

lar remodelling is an early process in MOG-induced EAE,
because increased vessel areas and endothelial proliferation
appeared evident as early as 4 days post-immunization
(dpi), in a pre-symptomatic disease phase, while the onset
and PBMCs of MS patients

CSF PBMCs

↓ [53,63] ↓ [59,63]

↑ [257]

↑ [185] ↑ [258]

↑ [111,185] ↑ [260]

↑ [258,262,263] ↑ [264-266]

↑ [268] ↓ [269]

↑ [75] ↑ [265,269]

↑ [272] ↑ [273]

↑ [275,276] ↑ [273]

↓ [277] ↓ [278]

↑ [279]



Figure 1 Vessel density is increased in EAE mice. A. Vessel density, calculated as the cumulative vessel profile length per standard area
(ImageJ software, NIH, Bethesda, USA; observer blinded to section ranking: CC), is significantly increased in EAE brains at 19 days post-
immunization (dpi) (ctrl: 12 week-old control mice, n = 5; EAE: 12 week-old EAE mice, n = 5; t-test, p = 0.0026). B, C. Representative images of the
vasculature of the same cerebral cortex area (area frontalis) in healthy mice and EAE (mouse at 19 dpi after 200 μg of MOG35–55 immunization;
clinical onset: 10 dpi, clinical score (cs) at 19 dpi = 3.0) are immunolabelled with CD13, a pericyte marker, and collagen IV of the vessel basal
lamina. Some glomeruloid microvessels associated with a high number of pericytes are visible in the EAE brains.
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of symptoms occurred around 14 dpi. In the EAE, VEGF is
expressed by astrocytes, monocytes and activated Th1 lym-
phocytes, all contributing to BBB breakdown [35,39,51].
Other studies have confirmed increased angiogenesis,
severe inflammation and activated VEGF signalling in
inflamed lesions [35,46,47,50,52]. VEGF increases inflam-
mation in those areas injected with exogenous VEGF in
MBP-immunized animals [35]. In addition, the expression
of VEGF is demonstrated in dorsal root ganglion neurons
and dorsal column axons in spinal cord, implying that it
may act as a neuromodulator [45]. During EAE, an in-
creased neuronal VEGF expression has been described in
the early phase but decreased expression in the late phase
[45]. Another study reported a decreased VEGF level not
only in neurons but also in astroglia in a rat EAE experi-
mental model [53]. A VEGF decrease may be caused by
neuronal dysfunction, as already demonstrated in epilepsy
by McCloskey et al. [54]. Astroglial production of VEGF is
enhanced in pathological conditions, including human as-
trocytoma [55] and MS and EAE, to promote angiogenesis
and glial survival [50]. The striking differences of VEGF
expression levels and cell sources among different stud-
ies could be explained by the use of different EAE
models as regards immunization protocol, animal spe-
cies and strain employed.
The role of VEGF in MS pathogenesis
Accumulating evidence indicates a role for VEGF in the
pathogenesis of MS. VEGF-A, mainly secreted by astro-
cytes and neurons but also by cerebral endothelial cells
and leukocytes, binds its receptors, VEGF-R1 and
VEGF-R2, expressed on different cell types including
endothelial cells, astrocytes, neurons, microglia, leuko-
cytes [19,39,45,47,50,53,56,57]. An elevated VEGF ex-
pression was detected in reactive astrocytes of both
active and inactive chronic demyelinated lesions [35], in
NAWM from post mortem MS brains [58], and in sera
of MS patients during clinical disease relapses [59], and
is correlated with the length of spinal cord lesions [12].
VEGF, acting as a pro-inflammatory factor, can cause

CNS injury. The effect of VEGF in other disease models
could also shed light on the MS pathogenesis. In an
ischemia-reperfusion model, inhibiting the activity of en-
dogenous VEGF reduces the size of lesions [60], whereas
exogenous administration of VEGF exacerbates CNS in-
jury [35,57,61]. However, in experimental conditions, the
administration of VEGF to the CNS can be beneficial or
detrimental depending on the rat strain, VEGF dose and,
especially, timing [61,62].
In the late MS phase, VEGF-A, acting as a neuropro-

tective agent for neurons and neural progenitors, is
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decreased in the cerebrospinal fluid (CSF) of MS patients
and also in peripheral blood mononuclear cells (PBMC)
from secondary progressive MS (SP-MS) patients [53,63].
In addition, reduced levels of VEGF are associated
with EAE, as already mentioned [45,53,64], and also with
amyotrophic lateral sclerosis (ALS), a human neuro-
degenerative disease [65-67].
VEGF is released for neuroprotection purposes, en-

hances axonal growth and neuronal resistance to injury of
cultured neurons [68], but at the same time it induces the
dismantling of BBB tight junctions [69].
VEGF-A is mitogenic for astrocytes [70], and reactive

astrocytes play a pivotal role in the healing process after
spinal cord injury [71]. VEGF-R1 and R2 are upregulated
on microglia and other antigen presenting cells after
CNS trauma, suggesting a modulating role of VEGF in
CNS immune surveillance [72].
VEGF induces anti-inflammatory effects and down-

regulation of a broad set of inflammatory cytokines and
chemokines in microglia/macrophages, and this im-
munosuppression is linked to the plasticity-promoting
action of VEGF [73]. But VEGF-A also recruits mono-
cytes via VEGF-R1, inducing inflammation and BBB
breakdown in rat brain [19], as well as being chemotac-
tic for T-cells and macrophages [74]. T cells express
VEGF and VEGF-R2, fostering the transition toward the
Th1 phenotype; an upregulation of Th1 lymphocytes in
CSF has been observed in relapsing MS patients [75].
VEGF-stimulated T cells also exacerbated adoptive EAE
in rats [51].
VEGF production is promoted by several pro-

inflammatory cytokines such as IL-1β, IL-1α and IL-18
[76], and macrophages, too, are known to produce VEGF
[27] and NO, further stimulating VEGF production and
VEGF receptor expression by endothelial cells [36].
VEGF-R2 is also expressed on endothelial cells in active

MS lesions [50], possibly contributing to produce an in-
creased vessel density and endothelial proliferation. In re-
sponse to VEGF, activated endothelial cells down-regulate
Cx43 gap junctional communication [77] and increase the
expression of cell adhesion molecules such as PECAM-1/
CD31, VCAM, ICAM-1, MIP-1α, MHC I and II, Selectin
[19], activating a loop that boosts neuroinflammation and
angiogenesis. Thus, the surprisingly multiple effects of
VEGF in CNS can be reconciled, considering that VEGF
splice variants could result in opposite effects due either to
binding with different affinity VEGF-Rs and Neuropilin-1
or to differential tyrosine residue phosphorylation of
VEGFRs [78,79].

Other angiogenic molecules potentially involved
in MS and EAE angiogenesis
Hypoxia inducible factor (HIF-1α) dimerizes with HIF-
1β and the complex translocation to the nucleus
promotes VEGF transcription [80]. The VEGF-A gene
contains a hypoxia responsive element that binds HIF-
1α [80]. An increased expression of HIF-1α was demon-
strated in MS lesions showing histopathological features
of hypoxic tissue damage [81]. HIF-1α is also increased
in EAE mice, together with other genes involved in cell
migration across the BBB [46].
Platelet-derived growth factor (PDGF) and basic fibro-

blast growth factor (bFGF) contribute to angiogenesis [82]
and oligodendrocyte progenitor growth and differentiation
after demyelination [83]. Serum levels of bFGF were sig-
nificantly increased in MS patients, while PDGF showed
no significant change [12].
Inflammatory molecules found in MS, including IFN-

γ and TNF-α, are also pro-angiogenic factors [84].
Endothelin-1 (ET-1) is another pro-angiogenic factor
that is significantly elevated in MS patients [85], and an-
tagonizing the ET-1 receptor ameliorates acute EAE
[86]. Angiopoietin-2 (Ang-2) is increased in neurons,
glia and inflammatory cells during EAE [45,64]. Endo-
thelial α5β1 integrin, involved in endothelial prolifera-
tion in hypoxic conditions [87], is transiently upregulated
in EAE [40]. Gene expression analysis of the laser-
captured microvascular compartment of active lesions
from MS autopsy samples has shown an increased expres-
sion of matrix metalloprotease-14 (MMP-14), MMP-2,
ADAM17, VEGF-A, and VEGF-R1 [88]. Other inflamma-
tory mediators such as TNF-α, IL-8, transforming growth
factor-β (TGF-β), and MMP-9 released by immune cells
induce angiogenesis [51] and, in turn, new vessel walls are
easily permeable to immune cell transmigration and foster
adhesion and cytokine molecules expression [89].

Overlapping signalling mechanisms among
angiogenesis and neurogenesis, plasticity
and repair
Compelling evidence shows a coordinated interaction
between the nervous and the vascular systems during
development and in adult brain [90]. This interaction is
responsible for the creation of a specialized perivascular
microenviroment called the neurovascular niche, in
which neural and glial progenitors develop, proliferate
and differentiate. Adult neurogenesis primarily occurs
in the subgranular zone (SGZ) in the hippocampus and
the subventricular zone (SVZ) of the anterior horn of
lateral ventricles. During regeneration, as well as during
development, angiogenesis and neurogenesis are closely
related; the molecular mediators of neurogenesis and
angiogenesis overlap and cell-cell signalling between
brain endothelium and neural precursors sustains on-
going angiogenesis and neurogenesis [91,92]. This
crosstalk is mediated by soluble signals secreted mainly
by endothelial cells [93,94]. These molecules, affecting
both neural and vascular function, have been called
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‘angioneurins’ [95], classified as angiogenic molecules, mor-
phogens and growth factors; in the latter group the proto-
typical factor is VEGF. Endogenous VEGF, abundantly
secreted by the ventricular neuroepithelium, regulates
neural progenitor proliferation, migration, differentiation
and the composition of neurons [96]. In adulthood, VEGF
signals transmitted by VEGF-R2 and R3 enhance cell pro-
liferation in the SVZ and SGZ by induction after voluntary
motor activity [97]. Several findings implicate VEGF as a
neuronal survival factor via VEGF-R1 signalling [98], and
also a factor promoting oligodendrocyte precursor cell
(OPC) survival and migration during axon guidance,
thanks to VEGF-R2 and R3 expression [99]. Both angio-
genic and neurogenic responses to VEGF are attenuated in
the aged mouse brain [100]. Finally, VEGF may impact
neuro-vascular interactions through alterations of the
extracellular matrix molecule (ECM) composition, particu-
larly of integrins and their ligands [101] and of SDF1/
CXCR4 expression [102]. This ligand/receptor interaction
is critically involved in OPC differentiation and remyelina-
tion in a model of toxic demyelination [103]. The ECM of
vascular endothelial cells can trap FGF-2 (bFGF), which fa-
cilitates neurogenesis [104] and promotes OPC migration
to demyelinated lesions [105]. Epidermal growth factor
(EGF), pigment epithelium-derived factor (PEDF) and
TGF-α have been implicated in adult neurogenesis and oli-
godendrogenesis [95,106]. EGF and FGF receptors co-
activation is required for the maintenance of neural stem
cells (NSCs) and progenitor cells in the adult SVZ
[107,108]. However, prolonged exposure to EGF induces
oxidative neuronal death and astrocyte commitment from
NSCs [109] and a higher secretion of EGF has been dem-
onstrated in PBMCs of patients with relapsing remitting
MS (RR-MS) [110]. Neurotrophins such as nerve growth
factor (NGF) and brain-derived neurotrophic factor
(BDNF) reciprocally promote angiogenesis [111,112], and
higher amounts of both have been detected in CSF from
MS patients [113,114]. BDNF and its receptor tyrosine kin-
ase (gp145trkB) have been involved in immune-mediated
neuroprotection in MS lesions [115,116]. In other situa-
tions, vessels act as guidance templates for axons, releasing
guidance cues such as VEGF, artemin, neurotrophin-3 or
ET-3 [117].
VEGF-Rs cooperate with the Notch pathway during

vascular patterning and also neurogenesis [118]. Notch-
1 and Notch-4 receptors, as well as Jagged-1, delta like 1
(Dll-1), and Dll-4 ligands of Notch, are expressed in
endothelial cells [119]. In adult brain, the Notch pathway
is expressed in SVZ and SGZ NSCs and regulates the
maintenance of an undifferentiated state [120]. In
addition, Notch–expressing NSCs are closely juxtaposed
to local blood vessels, and able to directly bind Dll-4 and
Jagged-1 exposed on the endothelial cells, where a de-
creased pericyte coverage exists [121]. MS demyelinated
lesions contain Notch-expressing OPCs and modulation
of the Notch pathway in EAE enhances remyelination
and clinical recovery [122].
Wnt/β-catenin and Sonic HedgeHog (SHH) morphogen

signallings both regulate embryonic neurogenesis and
angiogenesis [123,124] and are variably associated with
the remyelination process [125] and BBB integrity [126].
Nogo-A is an axonal growth inhibitor, and negative regu-
lator of CNS angiogenesis [127]; anti-Nogo IgGs have
been shown to suppress EAE through an immunomodula-
tory activity and the removal of remyelination obstacles
between axons and new myelinating membranes [128].
Netrin-1 is a matrix-bound molecule interacting with dif-

ferent receptors (UNC and DCC, certain integrins,
DSCAM - Down’s syndrome cell adhesion molecule and
adenosine receptor AR2b) involved in axon guidance and
angiogenic blood vessel guidance [reviewed in 91], that has
been shown to inhibit migration of oligodendrocyte pre-
cursor cells into the demyelinated lesions [129]. Ephrins
and their Eph receptors are short range axon guidance
molecules, expressed in developing vessels and critical for
their maintenance [reviewed in 91], that have shown differ-
ent expression profiles in several CNS cytotypes of MS pa-
tients [130]. The specific receptor EphA4 has been
implicated in the onset and a more severe course of EAE,
probably due to increased axon damage during demyelin-
ation [131]. Also semaphorins and their receptors, plexins
and neuropilins, regulate both axon guidance and angio-
genic vessel branching and extension [reviewed in 91], and
are crucially involved in remyelination failure in MS
[132,133], dysregulation of T cell responses and the main-
tenance of tolerance in EAE [134,135].
Ang-1 and −2 also play an angiogenic role, together

with VEGF, during blood vessel formation and stimulate
proliferation and migration of neural precursor cells
(NPCs) [90,136]. The expression level of Ang-2 is in-
creased in RR-MS patients sera (Table 1) and in EAE
mice spinal cord [45,64].
Erythropoietin (EPO) promotes angiogenesis, VEGF se-

cretion and VEGF-R2 expression on the cerebral endothe-
lium and also CNS neurogenesis, directly via the EPO
receptor and indirectly via BDNF-increased secretion and/
or suppression of cytokine signalling [137]. The relevant
neuroprotective, proangiogenic and anti-inflammatory po-
tential of EPO in MS/EAE is discussed below. In addition,
oestrogen and androgen promote angiogenesis and neuro-
genesis after CNS injury [138,139]. EAE studies with vari-
ous sexual hormones or estrogen receptor (ER) ligand
treatments led to clinical disease protection, as well as
protection against CNS inflammation, demyelination and
axonal loss [reviewed in 138]. ERβ ligand may not only
prevent demyelination, but also promote remyelination
[140]. In a pathological situation (stroke), nitric oxide
(NO) has a dual role in promoting angiogenesis and
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neurogenesis [141,142] and its action is closely linked to
VEGF and BDNF expression in endothelial cells [143].
Recent studies have revealed that a hypoxic gradient is

an adequate stimulus to foster angiogenesis and neurogen-
esis, upregulating HIF-1 [144]. Somatic stem cells reside
within hypoxic niches, where low oxygen prevents oxida-
tive stress and premature differentiation [145]. Moreover,
NSCs have been observed to migrate to brain regions
where active angiogenesis is occurring in neurological dis-
eases [90], creating a temporary vascular niche where the
angiogenesis and neuroreparative processes are recipro-
cally fostered [146].
In the context of mutual relationships between differ-

ent cells of the neurovascular unit, endothelial cells of
microvessels have shown to provide trophic support for
OPCs [147]. During development, OPCs migrate from
the ventricular zone to their destination and then differ-
entiate into myelinating oligodendrocytes. OPCs are also
widely distributed in adult human brain and MS lesions
[148] and are guided to repair demyelinated axons [149].
Endothelial cells actively support the maintenance of
OPCs, acting directly through endothelin B receptors
expressed by OPCs [150]. Several growth factors, such
as PDGF-α, bFGF, hepatocyte growth factor (HGF), are
known to induce proliferation and differentiation of
OPCs, but VEGF produced by cerebral endothelial cells
has a unique migration-promoting effect on OPCs [99].
Thus, VEGF is a biphasic mediator in the neurovascular
response to demyelinating injury; during the early in-
flammatory phase it promotes BBB permeability, and in
the chronic phase, accelerates not only angiogenesis,
neurogenesis but also oligodendrocyte lineage plasticity
and repair. In fact, exposure of endothelial cells to sub-
lethal levels of oxidative stress abrogates their support of
OPC viability [147] and this could explain why OPC dif-
ferentiation into myelinating oligodendrocytes seems to
be blocked or ineffective in MS. Additionally, in re-
sponse to injury, activated astrocytes release bursts of
ATP and induce hypertrophy of their vascular endfeet
[137]. This locally increased ATP and decreased oxygen
potentiates NSC expansion by upregulating VEGF, EGF,
FGF-2 and NO [151] but delaying differentiation. Angio-
centric perivascular demyelinated lesions show local in-
flammation also in the proximity of the lateral ventricles
SVZ, and the effects of released inflammatory mediators
on the neurovascular niches may be profound in this area,
that is one of the preferential locations of demyelinating
inflammatory lesions in MS [152]. Persistent brain inflam-
mation, induced by immune cells targeting myelin, exten-
sively alters the proliferative and migratory properties of
SVZ-resident stem cells (NPCs and OPCs) [153,154], and
could justify the limited repair mechanisms observed after
a long disease duration in MS patients (Figure 2). In
addition, MS CSF contains a panoply of humoral signals
that could interfere with the ependymal cells and conse-
quently the subependymal neurogenic cells [155].

Chronic hypoperfusion, hypoxia and angiogenesis
Positron Emission Tomography (PET) and Single Photon
Emission Computed Tomography (SPECT) studies have
shown a decreased cerebral blood flow (CBF) in grey and
white matter of MS patients [156,157]. Non conventional
magnetic resonance (MR) techniques, such as proton MR
spectroscopy and magnetization transfer resonance, have
demonstrated diffuse pathological changes affecting both
NAWM and NAGM in MS patients. Perfusion weighted
imaging showed a significant CBF reduction and pro-
longed transit time throughout the NAWM of a group of
RR-MS patients [158], and also involving NAGM [159].
Furthermore, CBF and cerebral blood volume (CBV) were
reduced in primary progressive (PP-MS) patients
[160,161]. A decreased blood flow has been speculatively
proposed as a cause of leukocyte infiltration crossing the
venule wall of WM [162] but CNS hypoperfusion could
actually be a consequence of disease progression.
Acute lesions visible as local gd.e. areas on T1 weighted

MRI were characterized by increased CBF and CBV
[163,164]. However, more evolved MR parameters for ner-
vous tissue angiogenesis such as time-dependent changes
in 1/T1 (R1), used to form maps of blood-to-brain transfer
constant of Gd-DTPA (Ki), ICAM-1 micron-sized parti-
cles of iron oxides, in addition to magnetization transfer
parameters such as T1sat and kinv [165], could be used to
further investigate MS angiogenesis in vivo. Our opinion
is that BBB incompetence, demonstrated by gd.e., could
reveal the same MRI sign both in early, immature angio-
genic microvessels and in inflamed venules. In fact, pos-
sible evidence of the presence of angiogenesis in MS could
be the appearance of “ring enhancement” at the periphery,
but not in the centre, of chronic active lesions during
contrast-enhanced MRI [166]. Nevertheless, ring enhan-
cing lesions are unusual in progressive MS and, in general,
gd.e. is able to detect venular BBB incompetence in acute
MS lesions containing both early angiogenic vessels and
infiltration of immune cells.
Chronic lesions and the remaining NAWM and NAGM

appeared hypoperfused due to a reduced axonal activity
[167], with a lower K+ release in the periaxonal and peri-
vascular space, reduced astrocyte metabolism [168] and
reduced arteriolar vasodilatation [169] (Figure 2C). In this
context it is not surprising to find elevated VEGF signal-
ling [58], increased vessel density and angiogenic endothe-
lial cells in MS chronic demyelinated lesions and NAWM
[22] as a frustrated attempt to overcome the chronic
hypoperfusion.
In short, angiogenesis and an increased vascular blood

flow could dominate the early inflammatory phase of le-
sion formation, whereas, despite an increased vessel



Figure 2 Hypothetical model of Neurovascular Unit function (NVU) (A) and dysfunction in an acute MS lesion (B) and a chronic end-
stage lesion (C). (A) Composition of blood–brain barrier (BBB)-provided microvessels, formed by endothelial cells which are connected by tight
junctions (TJ), pericytes, astrocyte endfeet, and a continuous layer of basement membrane (BM). Neurovascular coupling is brought about by
astrocyte processes which remove excess K+ ions at active synaptic spaces and release these ions into perivascular spaces; at the same time
Glutamate (Glu) bound to astrocyte receptors can increase astrocytic Ca++ levels and produce vasodilatatory substances. Microglia and
oligodendrocyte precursor cells (OPCs) contribute to NVU function. (B) An acute MS lesion, dominated by high levels of VEGF and other
angiogenic molecules, shows BBB leakiness, vasogenic swelling of BM and disrupted NVU interactions: claudin-5 and occludin, two TJ proteins,
are mislocalized and downregulated; the BM is degraded by MMPs, mainly released by leukocytes infiltrating vessel BM; microglia are activated
and release large amounts of pro-inflammatory mediators; astrocyte endfeet are detached from pericytes. Activated B lymphocytes release
self-targeted antibodies damaging myelinated axons. (C) Chronic end-stage MS lesion dominated by hypoperfusion, and persistence of an
inflammatory milieu with abundant reactive oxygen species (ROS), peroxynitrite (RNS) and stress-associated proteins, all together inhibiting the
net pro-angiogenic activity. The drawing shows pro-inflammatory microglia and also the influence of demyelination on reduced axonal activities,
decreased vasodilatatory stimuli and consequent vasoconstriction. Hypoperfusion is also due to vessel wall hyalinization, collagen deposition and
astrocyte endfeet hypertrophy. Persistent inflammation is also responsible for endothelial-derived protective molecules and growth factors
downregulation which, in turn, maintains neural stem cells (NSC) in a resting state and impedes neuroblast and OPC maturation in the neurovascular
niches in the subependymal layer of the lateral ventricle (LV) and in other neuroregenerative sites around blood microvessels.
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density, hypoperfusion could characterize the late degen-
erative phase, featuring a limited efficiency of endogenous
neuroprotective mechanisms, by which angiogenesis, in-
creased cerebral blood flow and neurorepair should be fur-
ther promoted. This notion could be extended, since
raised perfusion was higher in the WM of RR-MS at onset,
before therapy, whereas hypoperfusion was more promin-
ent in the PP-MS group [161], consistently associated with
axonal loss, minor inflammatory signs and resistance to
the available immunomodulatory drugs [170].
The role of hypoxia in inflammatory lesions of both MS

and EAE may be compound, since chronic mild hypoxia
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(10% O2) has a beneficial effect in the acute and chronic
phases in MOG-induced mouse EAE [171]. This effect is
due to the promotion of tissue survival but also to the
modulation of immune mechanisms: pericytes produce
anti-inflammatory eicosanoid prostaglandin D2, endothe-
lial cells release TGF-β that promotes the differentiation
of T regulatory cells, and astrocytes express HIF-1α [172].
One of the most consistent differences in gene expression
between secondary progressive (SP-MS) patients and
healthy controls was enhancement of HIF-1α and its
downstream components [58]. In this specific inflamma-
tory condition, the increased effort of HIF-1α and VEGF
promoting angiogenesis/arteriogenesis and normalizing
oxygen levels to maintain oligodendrocyte and neuron
functions could be counterbalanced by other molecules,
such as reactive oxygen species (ROS) [173-175], nitric
oxide intermediates and peroxynitrite (RNS) [176]. These
molecules could be responsible for mitochondrial dysfunc-
tion [173], distal oligodendropathy [177], apoptotic-like
cell death and axonal injury [178]. In MS patients, these
pathologic mechanisms are associated with astrocyte dys-
function [167-169], which could explain the arteriolar
vasoconstriction in the presence of high metabolic de-
mands (neurovascular uncoupling), accounting for so se-
vere a hypoperfusion state as to result in hypoxia, and
ultimately responsible for disease progression. In fact, the
level of VEGF expression in resident astrocytes and neu-
rons appears increased in progressive MS patients [35,58],
as well as in RR-MS [35], and a reduced level of VEGF has
been detected only in non-resident mononuclear cells in
CSF and peripheral blood [53,63]. This latter evidence
could be compatible with the hypothesis of a true histo-
toxic hypoxia, as well as the observed lactate increase in
CSF and serum of MS patients [179,180]. Another import-
ant pathogenic aspect of chronic progressive MS could be
mitochondrial dysfunction, aggravating the nervous tissue
distress caused by hypoxic injury [177]. Inflammatory cells
(especially macrophages and activated microglia) releasing
ROS and RNS [173,176,181] provoke clonally expanded
mitochondrial DNA deletions responsible for respiratory
chain defects detected in MS patients [182,183] and a con-
sequently inevitably decreased ATP synthesis.
Finally, cerebral hypoperfusion in MS patients might

be aggravated by ET-1 [85,184,185], together with alter-
ations in the renin-angiotensin-aldosterone-system de-
tected in MS patients such as decreased CSF angiotensin
II levels [186], increased serum angiotensinogen convert-
ing enzyme [187] and up-regulation of angiotensin II re-
ceptor type I on myelin-autoreactive CD4+ T cells and
monocytes of MS brain lesions [188].

Therapeutic potential of targeting angiogenesis
Although angiogenesis is likely not the first event in the
pathogenesis of MS, its changing role in the different
phases of disease progression makes it an important and
underestimated target in therapeutic options. The current
concept of the natural history of MS refers to a combin-
ation of two phenomena underlying the two phases of
MS, namely an inflammatory process in the remitting
phase and a neurodegenerative process in the progressive
phase. The secondary progressive phase of MS is primarily
caused by axonal degeneration following demyelination.
The potential advantages of inhibiting angiogenesis in the
early phase of MS could stem from reducing the vascular
supply of nutrients and inflammatory cells to the demye-
linating lesions, halting the production of endothelial-
derived pro-inflammatory molecules [189]. This approach
could be proposed only in aggressive acute relapsing MS,
where immunosuppression could be associated with spe-
cific antiangiogenic therapy. Considering the central role
of VEGF signalling in pathological angiogenesis during the
early MS phase, anti-VEGF therapy should be highly bene-
ficial in the aggressive MS-subtype. We will briefly discuss
some of these strategies, but do not propose to provide an
exhaustive review of the literature.
Bevacizumab, a monoclonal anti-VEGF antibody ap-

proved for renal, ovarian, lung and mammary glands
malignancies, that has been proven to ameliorate EAE
[64], is now being tested in a clinical trial in a group
of patients with neuromyelitis optica, an aggressive
disease mimicking MS (ClinicalTrials.gov Identifier:
NCT01777412). Nevertheless, experimental inhibition
of VEGF signalling using another neutralizing antibody
decreased angiogenesis and astroglial proliferation, but
led to greater neurodegeneration in a model of stab
wound injury of the CNS [190]. In murine MOG-EAE,
antagonizing VEGF-R2 with Semaxinib (SU5416) was
effective only in the acute inflammatory phase of the
disease, but not in the chronic, degenerative phase [46]. In
addition, Bouerat et al. [191] demonstrated a high efficacy
of several anti-VEGF-R2 analogues and pro-drugs in an
EAE model. Systemic administration of cavtratin, a selective
eNOS inhibitor that can abrogate VEGF signalling, reverted
neurologic deficits in EAE mice [39].
Bortezomib, a proteasome inhibitor, could be useful to

treat MS considering its potent anti-lymphocytic and anti-
angiogenic activity [192].
Thalidomide, and its analogue lenalidomide, are

known to inhibit TNF-α, VEGF and IL-6 production
[193]. Thus, the use of thalidomide in MS has been sug-
gested, considering its protective action against endo-
thelial damage induced by TNF-α [194,195], reduced
leukocyte chemotaxis and phagocyte activity [196], in-
hibition of IFN-γ and IL-12 [197], co-stimulation of
CD8+ lymphocytes [198]. Thalidomide has been dem-
onstrated to restore BBB tightness and to protect the
CNS in two experimental models of brain toxicity [199].
In the MOG-induced EAE model, N-(aminopropyl)-4-
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amino thalidomide is a promising therapeutic tool, able to
reverse clinical and histological signs of EAE [36,200].
Corticosteroids stabilize the BBB [201] and inhibit

angiogenesis in tumours [202] and chronic inflammation
[203] (Table 2).
IFN-β displays anti-angiogenic and BBB stabilizing

properties [84,204,205]. Glatiramer Acetate (GA; copoly-
mer 1), a mixture of synthetic peptides mimicking myelin
basic protein, used as a first-line treatment option for RR-
MS, inhibits a tryptophanyl-tRNA synthetase known to
modulate angiogenic signalling [206,207]. The selective
adhesion molecule inhibitor Natalizumab, which binds
integrin-α4 on endothelial cells and blocks the VCAM-1
driven transmigration of immune cells sensitized against
myelin antigen from the vessel lumen to the neuropil
across the BBB, precludes VEGF-induced angiogenesis
[208,209]. Fingolimod (FTY720), an immunomodulator
that acts on sphingosine 1-phosphate (S1P) receptors, is
the first oral drug approved for the treatment of RR-MS.
Downmodulation of S1P receptor type 1 (S1P1) prevents
the release of lymphocytes from lymph nodes into the
lymphatic vessels and vascular recirculation to the CNS,
reduces astrogliosis, restores BBB function, and inhibits
angiogenesis during chronic neuroinflammation, also via
inhibiting PDGF-B-induced migration of vascular smooth
muscle cells [210-212]. Alemtuzumab, recently licensed
for the treatment of MS, is a humanized monoclonal anti-
body directed against CD52, a protein that is widely distrib-
uted on the surface of lymphocytes and monocytes and is
Table 2 Currently used disease-modifying agents and acute
exacerbation medications with an anti-angiogenic property

Chemical name Brand name References related to
anti-angiogenic activity

Alemtuzumab1 Lemtrada [213]

Cyclophosphamide2 Endoxan, Cytoxan,
Neosar, Procytox,
Revimmune

[217]

Dexamethasone Decadron [203]

Methylprednisolone Solu-Medrol [203]

Dimethyl fumarate Tecfidera [215]

Fingolimod Gilenya [210-212]

Glatiramer acetate Copaxone [206,207]

Interferon β-1a Avonex, Rebif [84,204,205]

Interferon β-1b Betaferon, Extavia

Mitoxantrone Novantrone [216]

Natalizumab Tysabri [208,209]

Teriflunomide Aubagio Only indirect evidence
derived from anti-
lymphocytes activity

1licensed for MS therapy by the European Medicine Agency (EMA) but
rejected by the Food and Drugs Administration (FDA), USA; 2not licensed but
used in clinical practice.
also an anti-angiogenic molecule [213]. Teriflunomide, an
inhibitor of the mitochondrial enzyme dihydroorotate de-
hydrogenase, which is critically involved in pyrimidine syn-
thesis, inhibits immune cell proliferation but shows only an
indirect antiangiogenic activity. Dimethyl fumarate is the
active compound of BG-12, recently licensed for the treat-
ment of RR-MS; its activity is predominantly mediated via
activation of the nuclear 1 factor (erythroid-derived
2)–like 2 (Nrf2) antioxidant response pathway [214].
BG-12 also modulates immune-cell responses, sup-
presses proinflammatory-cytokine production and in-
hibits angiogenesis [215] (Table 2).
Immunosuppressive therapies (i.e. mitoxantrone, cyclo-

phosphamide), used to revert the aggressive course of
MS, also exert an anti-angiogenic activity [216,217]. A
chemotherapeutic agent, cladribine, effective but unsafe in
MS, decreases the level of angiogenic factors [218]. Myco-
phenolate mofetil is an immunosuppressive agent, some-
times used as a disease-modifying therapy for MS, that
can stabilize aggressive MS patients, and shows an anti-
angiogenic activity [219]. Minocycline has been effective
in EAE [220]; it is an anti-angiogenic drug in tumours
[221], decreases VEGF and MMP-9 [222,223] and has
been tested in combination with IFN-β (NCT01134627)
and GA (NCT00203112) [224].
To date, disease modifying drugs have been shown to

have little impact on the natural course of the progres-
sive phase of MS. The development of add-on treat-
ments targeting axonal repair and remyelination and/or
slowing disease progression through neuroprotection/
neuroregeneration remains the most important goal in
the clinical management of chronic progressive MS
[225,226]. As the endogenous neuroregenerative re-
sponse can be suppressed by inflammation or exhaus-
tion, delivery of neurovascular factors by mesenchymal,
foetal or bone marrow-derived stem cells could increase
endogenous repair, angiogenesis, neuronal and axonal
survival and oligodendrocyte maturation and myelin
synthesis. The multitasking vascular and neuroprotec-
tive effects of VEGF show promise for therapeutic use
in neurodegenerative disorders such as ALS, PD, AD
and, eventually, progressive MS [227-229], when its
harmful vascular side effects can be restricted. Intra-
cerebroventricular delivery of recombinant VEGF pro-
tein improves motor performance and survival in a
rodent model of ALS [230]. In a stroke model, exogenous
VEGF administration increases neurogenesis of the SVZ,
only after 28 days, without concomitant angiogenesis,
demonstrating that a specific VEGF isoform could protect
neurons independently of the endothelial cell influence
[231]. In the EAE model, despite several reports of an im-
proved clinical score after early VEGF inhibition, one
study [232] demonstrated that pertussis toxin stimulated
VEGF expression and that VEGF neuroprotection could
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be responsible for milder disease. VEGF may have differ-
ent effects in different cell types depending on different
splice variants [233]. The endogenous splice isoform
VEGF-A165b has shown a potent neuroprotective effect in
hippocampal and cerebro-cortical neurons (mediated by
VEGFR2 and neuropilin-1 co-stimulation) with no pro-
permeability property [78,234]. This isoform may be an
interesting add-on therapy option against axon damage
in progressive MS, with fewer adverse vascular effects.
Another interesting approach could be to specifically
inhibit vascular permeability without affecting the en-
dogenous neuroprotective effect of VEGF. This ap-
proach has been successfully investigated in EAE mice
using angiostatin [235], cavtratin [39], anti-microRNA-
155 [236] and needs to be replicated in humans.
A protective effect of vitamin D on the risk of MS has

been demonstrated [237] and several trials suggested
beneficial effects of vitamin D supplementation. Vitamin
D3 promotes angiogenesis in endothelial cell cultures
[238]. Atorvastatin, pravastatin and simvastatin have both
anti- and pro-angiogenic activities depending on the dose,
specific angiogenic stimulus, and angiogenesis mechanism
in the specific disease local microenviroment [239,240].
They have been tested as neurorepair attempts in several
randomized clinical trials in combination with IFN-β and
GA [241-244].
Because neurons, oligodendrocytes and blood vessels

are involved in the pathogenesis of MS, it would be better
to use the same compound to treat all involved systems.
Apart from VEGF, other molecules can stimulate neuro-
genesis, oligodendrogenesis and angiogenesis. The first is
thyroxine (T4), that can decrease EAE severity [245] in-
crease NGF and promote neurogenesis and remyelination.
Other potential treatment options in selected MS patients
could be sexual hormones added to an immunomodulator
[138]. Among potential candidate compounds for neuro-
protection/neuroregeneration and angiogenesis modula-
tors in progressive MS, EPO appears very promising. EPO
possesses properties that could address several of the
pathophysiological mechanisms involved in progressive
MS, being an anti-apoptotic and anti-oxidative molecule,
promoting neurite outgrowth and axonal repair, neurogen-
esis, angiogenesis and BBB integrity (reviewed in [246]). In
addition, EPO treatment could temporarily decrease iron
stores within the CNS, possibly providing an additional
beneficial effect in chronic progressive MS patients. Excess
iron may have several deleterious effects on axons, includ-
ing iron-catalyzed production of ROS and RNS causing oxi-
dative tissue injury. Iron accumulation may also alter
oligodendrocyte activities (reviewed in [246]). Recombinant
human EPO treatment has already proven safe and effective
in severely affected MS patients [247-249]. Testing in clin-
ical trials of EPO variants developed to minimize the risk of
thromboembolism is a promising research field.
Concluding remarks
In MS as well as in EAE, CNS lesions and surrounding
NAWM/NAGM are characterized by different vascular
changes in the different disease phases. In the acute demye-
linating phase, there is a complex balance between vessel
modulators released by inflammatory cells and hypoxia of
more distant nervous tissue from blood microvessels that
could be affected by localized vasogenic swelling due to the
VEGF-induced altered vascular permeability [250,251]. A
reduced axon activity could cause hypoperfusion and hyp-
oxia also in the chronic disease phase (Figure 2).
Blocking VEGF signalling and angiogenesis reduced clin-

ical and pathological signs of disease in the early phase in
an animal model of MS [39,46,64,190,191]. EAE model
experiments have shown that hypoxic pre-conditioning re-
duced the clinical severity and leukocyte infiltration thanks
to increased levels of VEGF, TGF-β, IL-10 [171,172]. How-
ever, aberrant angiogenesis and localized regression of the
microvasculature can contribute to brain hypoperfusion
and neurovascular uncoupling [252]. In this context, the
timing of vascular remodelling and growth factors release
could be crucial. In early demyelinating lesions, remodelling
is harmful and exacerbates the disease. Nevertheless, in
chronic disease phases, angiogenesis, and especially the
neuroprotective properties of VEGF, might be highly bene-
ficial. An alternative therapeutic agent for this neurodegen-
erative condition with a lesser influence on cell types other
than neurons, and also lacking pro-permeability/angiogenic
properties, may be VEGF-A165b [78,234].
Angiogenesis, induced either by CNS inflammation or

by hypoxia, provides trophic factors for tissue remodel-
ling [91,253]. In a chronic hypoxia model of cerebrovas-
cular disease, angiogenesis proceeds in the absence of
BBB leakage, being associated with increased tight junc-
tion protein expression [254]; this demonstrates that
angiogenesis is not indissolubly linked to BBB break-
down. In addition, resolution of impeded angiogenesis
in neural stem cell niches in the SVZ would increase
oxygen levels and could also promote differentiation of
oligodendrocyte precursors.
Future therapeutic efforts should be based less on a

total block of angiogenesis, and more on titration of the
response to produce new vessels with a functional integ-
rity. These therapeutic options could be promising for
application in MS, even if the angiogenic component of
MS has still to be fully explained. To determine whether
there is a correlation between clinical benefit and levels
of angiogenic molecules, studies comparing clinical signs
and circulating angiogenic markers in treated or un-
treated MS patients over time are currently ongoing, to-
gether with studies exploring angiogenesis-promoting
molecules versus antiangiogenic drugs in late stage
chronic MOG-induced EAE. In addition, clinical trials ex-
ploring combination therapy with an MS subtype-oriented
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immunomodulator/immunosuppressive agent added to an
angiogenic/neuroreparative molecule during the progres-
sive phase of MS could be warranted.
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