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Abstract 

The tumor micro‑environment (TME) plays an important role in various cancers, including gliomas. We estimated 
immune cell type‑specific gene expression profiles in 3 large clinically annotated glioma datasets using CIBERSORTx 
and LM22/LM10 blood‑based immune signatures and found that the proportions and estimated gene expression 
patterns of specific immune cells significantly varied according to IDH mutation status. When IDH‑WT and IDH‑MUT 
tumors were considered separately, cluster‑of‑cluster analyses of immune cell gene expression identified groups with 
distinct survival outcomes. We confirmed and extended these findings by applying a signature matrix derived from 
single‑cell RNA‑sequencing data derived from 19 glioma tumor samples to the bulk profiling data, validating findings 
from the LM22/LM10 results. To link immune cell signatures with outcomes in checkpoint therapy, we then showed a 
significant association of monocytic lineage cell gene expression clusters with patient survival and with mesenchymal 
gene expression scores. Integrating immune cell‑based gene expression with previously described malignant cell 
states in glioma demonstrated that macrophage M0 abundance significantly correlated with mesenchymal state in 
IDH‑WT gliomas, with evidence of a previously implicated role of the Oncostatin‑M receptor and macrophages in the 
mesenchymal state. Among IDH‑WT tumors that were enriched for the mesenchymal cell state, the estimated M0 
macrophage expression signature coordinately also trended to a mesenchymal signature. We also examined IDH‑
MUT tumors stratified by 1p/19q status, showing that a mesenchymal gene expression signature the M0 macrophage 
fraction was enriched in IDH‑MUT, non‑codeleted tumors. Overall, these results highlight the biological and clinical 
significance of the immune cell environment related to IDH mutation status, patient prognosis and the mesenchymal 
state in diffuse gliomas.
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Introduction
Gliomas are most aggressive and most common primary 
brain tumors that account for about 80% of all brain 
malignancies and include lower-grade gliomas (LGG) 
and glioblastomas (GBM) [46]. LGG typically range from 
grade 2 to 3 and have better survival, while GBM are cate-
gorized as high-grade tumor (grade 4) with poor survival 
[46]. Previous studies have highlighted the tumor heter-
ogeneity within both LGG and GBM, where LGG were 
classified into three subtypes: IDH gene mutation with 
the chromosome 1p/19q codeletion, IDH mutation with-
out 1p/19q codeletion, and IDH wildtype [7], while GBM 
were categorized into four molecular subtypes: proneu-
ral, neural, classical, and mesenchymal [64]. Recently, in 
the new classification by the World Health Organization 
(WHO), diffuse gliomas in adults can broadly be divided 
into three molecular subtypes based on their IDH muta-
tion and 1p/19q codeletion status: (i) IDH wildtype gli-
oma (GBM), (ii) IDH-mutant glioma without 1p/19q 
codeletion (IDH-mutant astrocytoma), and (iii) IDH 
mutant glioma with 1p/19q codeletion (IDH-mutant and 
1p/19q co-deleted oligodendroglioma) [39].

Current treatment mainly involves neurosurgical resec-
tion followed by radiotherapy and temozolomide (TMZ) 
chemotherapy. Despite such therapies, GBM remains 
an incurable tumor with a median survival of only 
15  months [68]. Recently, different immunotherapeu-
tic strategies have been explored [14], such as immune 
checkpoint inhibitors and chimeric antigen receptor T 
cells used in several extracranial cancers [5, 18, 19]. Prior 
literature suggests that histopathologically similar tumors 
can respond differently to specific treatments [1, 11, 42]. 
To account for this heterogeneity, the tumor microenvi-
ronment (TME) can be crucial to select the immunother-
apy responses [60]. Thus, the complex interplay between 
tumor cells and their tumor immune microenvironment 
can influence the outcome of immunotherapy and many 
other anti-cancer therapies to stratify patients [12, 19, 
33]. Recent studies have noticed subtype-specific enrich-
ment of immune cells [61] and their prognostic associa-
tion in multiple tumors [4, 27, 28, 48, 74]. For example, 
higher levels of immune cell infiltration are associated 
with HER-2 positive and triple-negative breast cancers 
[18, 30]. The immunological heterogeneity of gliomas has 
also been investigated, revealing the predominant anti-
tumor immune response in the mesenchymal subtype of 
GBM [13] and identification of immune-specific subtypes 
in diffuse LGG [72]. Recently, a comprehensive study has 
analyzed the tumor microenvironment of the brain and 
demonstrated significant enrichment of tumor-associ-
ated macrophages (TAMs) between glioma subtypes and 
brain metastasis [34]. Additional work has highlighted 
the role of macrophages in inducing mesenchymal-like 

state in glioblastoma, showing that macrophage-derived 
oncostatin M interacts with its receptor on glioma cells 
which in turn promotes mesenchymal state via STAT3 
signaling [24]. Such complex interplay between tumor 
cells and the tumor immune microenvironment in glioma 
is therefore worthy of further exploration where decon-
volution of bulk expression data in clinically annotated 
datasets could yield additional insights into this biology 
as well as its clinical relevance.

Deconvolution of gene expression data is an increas-
ingly used tool to estimate immune cell type proportions, 
as well as immune cell specific gene expression profiles. 
CIBERSORTx is an analytical tool that has been pro-
posed to impute gene expression profile from bulk data, 
providing an estimation of the abundances of member 
cell types in a mixed cell population [45, 57]. The LM22 
and LM10 signature matrices is commonly used to esti-
mate cell type abundance and gene expression of 22 and 
10 immune cell types, respectively. Using this approach, 
we hypothesized that the glioma subtypes classified based 
on their IDH mutation and 1p/19q codeletion status may 
harbor distinct tumor immune microenvironments and 
that specific microenvironmental signatures would corre-
late to patient outcome within IDH-WT and IDH-MUT 
gliomas. We also generate a single cell RNAseq dataset of 
19 glioma samples to generate a signature matrix highly 
relevant for deconvolution of bulk glioma expression data 
to extend key findings from the LM10 and LM22 signa-
tures. To fully explore and evaluate these hypotheses, we 
use 3 independent glioma datasets (The Cancer Genome 
Atlas (TCGA) and two Chinese Glioma Genome Atlas 
(CGGA) datasets) that offered the opportunity for repro-
ducibility and validation of findings. In addition to dem-
onstrating the subtype specific prognostic impact of 
infiltrating immune cells and their association with the 
tumor component, our study uncovered a comprehensive 
framework for future studies designed to characterize 
the interplay between tumor cells and their surrounding 
immune cells.

Methods
Glioma datasets and immune cell identification
We downloaded publicly available transcriptomic data-
sets for gliomas from two independent resources: TCGA 
data portal and Chinese Glioma Genome Atlas (CGGA). 
From TCGA, we considered LGG and GBM while from 
CGGA, CGGA325 [3, 75], and CGGA693 [38, 67] were 
used. These encompass a total of 1721 high to low grade 
gliomas. Read count matrices from TCGA were normal-
ized to TPM (Transcripts Per Kilobase Million) using a 
shiny R based COEX-seq package (https:// github. com/ 
kimsc 77/ COEX- seq) [32], while the CGGA datasets were 
already processed and ready to use for the downstream 
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analysis. These bulk datasets were then subjected to 
deconvolution against a signation matrix by using CIB-
ERSORTx with its default parameters and B-mode batch-
correction [57]. For this study, we employed LM22 and 
LM10 signatures, where LM22 encompass signatures 
from 22 individual immune cell types while LM10 is a 
condensed matrix comprising of 10 broad immune cell 
types from LM22. Notably, In case of LM10, monocyte 
includes M0, M1 and M2 macrophages into a single unit 
while T-CD4 includes T-naïve, T-mem-activ, T-mem-
rest, T-gam-del, T-help and T-reg cells. We also included 
an additional checkpoint inhibitor treated glioma dataset 
encompassing 29 tumors (GSE121810) and was decon-
volved with LM10 signatures due to its small sample size.

Tumor cell state deconvolution
To deconvolve previously desctibed tumor cell states 
we used publicly available scRNA Seq datasets from 
GSE70630 and GSE89567 for IDH-MUT samples, and 
from GSM3828672 for IDH-WT samples. The cells were 
labeled by using a previously published method https:// 
github. com/ jlaffy/ scalop with its scalop::sigScores and 
scalop::maxcol_strict functions to score cells using pre-
viously defined meta-modules. Cells from IDH-WT 
tumors were processed with MES-like, NPC-like, AC-
like and OPC-like meta-modules [44], while those from 
IDH-MUT were processed with Oligo-like, Astro-like 
and Stem-like specific genes [63]. Cell having a minimum 
score difference of 0.3 between the two maximum scor-
ing modules were selected to generate signature matrix 
by using CIBERSORTx [57]. These malignant cell state 
signatures from both IDH-WT and IDH-MUT tumors 
were then independently used to deconvolve the 3 bulk 
transcriptomic datasets with the default parameters and 
B-mode batch-correction.

Cell type‑specific gene expression profiling
Unsupervised clustering of gene expression deconvolu-
tion data was performed by Seurat v3. For the dimen-
sionality reduction, we used most variable 3000 genes 
with “Seurat::RunUMAP” function and identified cell 
type specific clusters [23]. We also explored subclus-
ters of each cell types by using K-means clustering with 
nstart = 25, iter.max = 500, algorithm = "Hartigan-Wong" 
and silhouette method to compute the optimal number 
of clusters. These were visualized by using R based Rtsne 
package and ggplot function.

Identifying closely related clusters of cell type clusters
To identify similarly behaving clusters from all the cell 
types or cell states based on their sample memberships 
we employed a binary approach, where "1" denotes the 

presence of a sample in a cluster while "0" represents its 
absence. These clusters were then subjected to unsuper-
vised clustering by using a R based ConsensusClusterPlus 
package with distance = pearson and maxK = 6, reps = 50 
[70]. We used NbClust R package to determine the opti-
mal number of clusters and the results were visualized by 
using a R based ComplexHeatmap package [20].

Functional annotation of the identified clusters
We used R based singscore package to score each 
sample against an immune signature, pathways, or 
biological processes [15]. The hallmark epithelial-mes-
enchymal transition (EMT) gene-set used in the analysis 
were downloaded from Molecular Signatures Database 
(MSigDB) [37]. We obtained Cytolytic (CYT) score by 
calculating the geometric mean of GZMA and PRF1 
expression [51] in each dataset from each of the identi-
fied clusters. Similarly, T cell exhaustion (TCE) score 
was calculated by using PD-1, CTLA-4, TIM-3, LAG-
3, CD160, 2B4, TIGIT, CD39, and BTLA genes [9]. We 
also attempted to estimate the STAT3-based gene scores 
by using STAT3, ELK3, DTX3L, AIDA, NEDD9, KLH-
DC8A, TWSG1, NAGA, MYO1C, SH3PXD2B, SLC35F5, 
HERC5, C5orf15, ZMYM6, TPM4, DAP, SNAP23, RHOJ, 
HMG20B, ZCCHC9, NAMPT, SLC43A3, BIRC2, BACE2, 
ITGB1, ITFG3, AGXT2L2, GNG12, PALLD, IGF2BP2, 
NUP37, CTNNA1, GMPPA, BRCA1, TMEM51, RPN2, 
FZD1, PTPN12, SHQ1, and NAA38 genes [58]. We used 
GENECODIS 4.0 beta for gene set enrichment analysis 
for the prognostic genes derived from M0 macrophages 
[8].

Survival analysis and statistical testing
Kaplan–Meier survival curves were computed by a 
R based “survival::survfit” function and visualized by 
“survminer::ggsurvplot” function. Multivariate Cox-
regression was performed by “survival::coxph" func-
tion. To examine the statistical significance between the 
groups we either used chi-Square test for 2X2 matrix or 
Fisher’s exact test for other combinations. The evalu-
ated significance levels were denoted by *** when p val-
ues < 0.0001; by ** when p values < 0.001; or by * when p 
values < 0.05. The overall workflow followed in this article 
is described in Additional file 1: Figure S1.

Single cell RNA‑sequencing and data processing
Fresh tumor tissues were processed using Brain Tumor 
Dissociation Kit (P) and gentleMACS Dissociator (Milte-
nyi Biotec) following manufacturer’s protocol. Erythro-
cytes were removed using a density gradient separation 
medium (Lympholyte-H; Cedarlane Laboratories) and 

https://github.com/jlaffy/scalop
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resulting cell suspensions were cleared from tissue debris 
using Debris Removal Solution (Miltenyi Biotec). Cells 
were counted and assessed with Luna-FL Automated Cell 
Counter (Logos Biosystems) and run on 10 × Chromium 
Next GEM Chip with target recovery of 6,000 cells per 
lane. Library generation, quality control, and sequencing 
were all performed following 10 × Genomics Single Cell 
3’ Reagent Kit User Guide.

Read demultiplexing and alignment to the GRCh38 
human reference genome was performed using the Cell 
Ranger Single Cell Software v2.0 (10× Genomics) with 
the cellranger’s mkfastq and count functions, respec-
tively. Raw count matrices were filtered for the minimum 
number of genes detected per cell (greater than 200) and 
the percentage of mitochondrial unique molecular identi-
fier (UMI) counts (less than 20%). Filtered barcodes were 
then merged and clustered using the Seurat v3 package 
in  R  as per the developers’ vignettes. Cell annotation 
and malignant cells identification were performed using 
scmap and CONICsmat. These annotated cells were used 
to generate signature matrix using CIBERSORTx with its 
default parameters and S-mode batch-correction.

Results
M2 macrophage abundance varies across glioma subtypes 
and correlates with patient survival
We first examined the composition of infiltrating 
immune cells in gliomas, we utilized CIBERSORTx [45] 
on 3 diffuse glioma datasets (TCGA, CGGA325 and 
CGGA693), using the validated LM22 signature matrix 
(Additional file 13: Table S1 and Additional file 2: Figure 
S2A). Similar to previous reports, we also found M2 mac-
rophages were the most abundant cell type across all IDH 
mutant (IDH-MUT) and wildtype (IDH-WT) tumors 
[61, 65]. We also observed that specific immune cell dis-
tributions were associated with IDH status. For example, 
M0 and M1 macrophages, neutrophils and T-helper cells 
were more abundant in IDH-WT gliomas, while mono-
cytes, resting dendritic cells, activated mast cells, and 
activated natural killer cells were significantly enriched 
in IDH-MUT tumors (Fig.  1A). However, within IDH-
MUT tumors, monocytes were more represented in the 
non-codeleted tumors, while resting dendritic cells and 
T-helper cells were abundant in the1p/19q codeleted 
tumors (Fig.  1B). These findings are in line with previ-
ous studies [34, 43, 49, 69]. Next, we evaluated the asso-
ciation of tumor-infiltrating immune cell fractions with 
survival outcomes. Survival plots revealed that high pro-
portion of M2 macrophages can predict poor prognosis 
across all datasets in both IDH wildtype (except TCGA) 
and mutant tumors (Fig.  1C). Previous reports have 
highlighted an association between immune infiltrate 
and DNA damage [61]. In line, we also found positive 

correlations for M2 macrophage abundance with vari-
ous genomic alterations like number of segments, frac-
tion of genome altered, and homologous recombination 
defects in TCGA datasets, where ‘‘fraction altered’’ repre-
sents the fraction of bases deviating from baseline ploidy 
(defined as above 0.1 or below -0.1 in log2 relative copy 
number (CN) space), while ‘‘number of segments’’ rep-
resents total number of segments in each sample’s copy 
number profile (Additional file 2: Fig. 2B). These results 
agree with prior studies and suggest altered tumor micro-
environments in diffuse gliomas based on IDH-mutation 
status, as well as correlations of the microenvironment 
with genomic alterations in the neoplastic cells.

Immune cell expression clusters are associated with IDH 
status, tumor grade, and patient survival
In addition to estimating the proportions of individual 
cell types, CIBERSORTx also estimates the gene expres-
sion profile of each cell type in each sample.  Figure  2A 
shows the transcriptomic clustering of 22 cell types 
across all samples independently in each of the three 
cohorts, Interestingly, gene expression profiles 15 of 
the 22 immune cell types revealed a clear separation 
between IDH mutant and wildtype samples in all 3 data-
sets (Fig.  2A). We also analyzed expression profiles of 
the genes associated with macrophages and T cells from 
IDH-MUT and IDH-WT tumors. This set of analy-
sis highlighted the expression-based cell-type specific-
ity between the two subtypes. For example, in IDH-WT 
tumors, genes expressed in M0 macrophages were signif-
icantly enriched for mesenchymal pathways while in IDH 
mutants it was immunological pathways (Fig. 2B).

Focusing further on M2 macrophages, we observed 
fine clusters that distinctly segregate by tumor IDH sta-
tus across all three datasets (Additional file  2: Fig.  S2C 
and D) and exhibit distinct survival characteristics 
(Additional file  2: Fig.  S2E). Importantly Cox multivari-
ate analyses, after adjusting for relevant covariates (IDH 
mutation status, tumor grade and patient age) indicated 
that these unsupervised cluster groups from decon-
volved M2 macrophage gene expression data remained 
independent predictors of patient outcome (Additional 
file  2: Fig.  S2F). Additional analysis using LM10 signa-
tures, (where monocyte includes M0, M1 and M2 mac-
rophages into a single unit while T-CD4 includes T-naïve, 
T-mem-activ, T-mem-rest, T-gam-del, T-help and T-reg 
cells) also showed distinct cluster representing each cell 
type. The majority of these cell types again showed a clear 
separation between IDH-MUT (green) and IDH-WT 
(orange) tumors (Additional file 3: Fig. S3A). For exam-
ple, monocytes showed clean clusters that were distinctly 
segregated by their IDH status and distinct survival 
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supports our results even with fewer cell types (Addi-
tional file 3: Fig. S3B, C and D).

For comparison, we next examined M2 macrophage 
expression-based clusters in non-glioma TCGA tumors 
but did not find such significant survival associations in 
most tumor types (Additional file 4: Figure S4), suggest-
ing that the prognostic association of macrophage-based 

gene expression groups may be relatively specific to 
gliomas.

Tumor groups with distinct immune signature patterns 
reveal distinct clinical features
Based on the above analyses, multiple expression-based 
clusters were identified for each immune cell type. For 

Fig. 1 An overview of the infiltrated immune cells in glioma and its subtypes. A Differentially represented cell types between IDH‑MUT (green) and 
IDH‑WT (orange) tumors are depicted by using boxplots. Similarly, B boxplots representing relative abundance of the cell types between Chr1p/19q 
codeleted (cyan) and non‑codeleted (dark green) samples in IDH‑MUT tumors. C Forest plots displaying prognostic association of M2 macrophages 
in both IDH‑WT and IDH‑MUT tumors. The abbreviations used for each cell type is described in Additional file 13: Table_S1
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Fig. 2 Gene expression clustering and the separation between IDH‑MUT and IDH‑WT tumors. A UMAPs denoting 15 independent gene expression 
clusters identified in all 3 datasets harboring a clear separation between IDH‑MUT (green) and IDH‑WT (orange) tumors. B Most significant pathways 
and related genes derived from selected cell types demonstrates comparative transcriptional profiles between IDH‑WT and IDH‑MUT tumors
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instance, there were 3 clusters for M2 macrophages, 2 
clusters for regulatory T cells, 4 clusters for monocytes, 
and so on. The unsupervised (k-means) clustering of 
each immune cell type-based clusters were next exam-
ined together to identify identical groups of immune-
based clusters in glioma. Towards that end, we used 
cluster-of-cluster analysis (COCA), an unsupervised 
method to integrate multi-omics data into biologically 
relevant sub-classes [26]. By applying COCA to these 
immune based clusters for all 22 immune cell types, we 
found distinct clusters of glioma samples significantly 
grouped by their IDH status, as shown in Fig. 3A and B, 
supporting immune cell signatures underlie the major 
glioma clinical subtypes.

We then separated the samples according to IDH 
mutation status (e.g., IDH-WT and IDH-MUT samples 
were analyzed separately) and performed COCA on 
these tumor groups in all 3 datasets. Among IDH-WT 
tumors (Additional file  5: Figure S5A), tumor clusters 
derived from this unsupervised analysis showed signifi-
cant survival associations across all 3 datasets. Among 
IDH-MUT tumors (Additional file 5: Figure S5B), 2 of 
3 datasets (TCGA and CGGA325) showed significant 
survival associations among these immune cell-based 
clusters, while the 3rd dataset (CGGA693) showed a 
statistical trend. These cluster memberships are listed 
in Additional file 14: Table S2.

The data represented in Additional file  5: Figure S5, 
included all 22 cell types and to further characterize 

Fig. 3 Cluster of cluster analysis of immune based clusters. A Heatmaps representing the hierarchical clustering of LM22 based clusters broadly 
differentiating IDH‑WT tumors from IDH‑MUT. B Histograms showing quantitative distribution IDH specific tumors across each cluster
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important immune cell types, next we focused on those 
individual cell types whose gene-expression-based clus-
ter groups were prognostic. Within IDH-WT tumors, we 
tested the gene expression cluster groups from each cell 
type to identify which ones showed a significant asso-
ciation with patient prognosis (Additional file  6: Figure 
S6). These included expression clusters derived from 
M0 macrophages, M2 macrophages, B-mem and DC-
active cells were consistently prognostic across all 3 data-
sets in IDH-WT gliomas (Additional file 6: Figure S6A). 
Among IDH-MUT tumors, M0 macrophages, T-help and 
B-mem cell derived cluster groups were found to be con-
sistently prognostic (Additional file  6: Figure S6B). We 
then applied these respective cluster groups to COCA 
analyses (Fig. 4) and found that samples defined by these 
COCA cluster groups remained prognostic in multivari-
ate Cox analyses even after adjusting for clinical variables 
(patient age and tumor grade) across all 3 datasets for 
both IDH-WT (Figs.  4A and B) and IDH-MUT tumors 
(Figs. 4C and D). This results further point to the poten-
tial clinical relevance of immune cell biology in predict-
ing patient outcome.

We then tested for macrophage abundance among 
these immune based clusters. Based on previous reports, 
macrophages and microglia can be distinguished by 
ITGA4 expression, where elevated expression in ITGA4 
represents macrophage marker [6, 34]. We found 
increased levels of ITGA4 in poor-surviving groups as 
compared to cluster groups with better survival across 
all 3 datasets for IDH-WT tumors and in 2/3 datasets for 
IDH-MUT tumors (Additional file  7: Figure S7A), sug-
gesting a link between macrophage abundance, immune-
based clusters, and the patient outcome in both IDH-WT 
and IDH mut gliomas.

We next explored cytolytic and T cell exhaustion 
scores and their survival associations with the identified 
immune cell-based clusters. With this set of analyses, we 
observed that higher levels of cytolytic and T cell exhaus-
tion scores among the poor surviving groups (Additional 
file 7: Figure S7B and C) and are in line with the previ-
ous reports [22, 71], further highlighting the biological 
or clinical significance of tumor microenvironments and 
their prognosis in gliomas.

Malignant cell states interact with immune 
microenvironment signature
To further characterize the role of the TME and their 
potential interactions with the malignant cell states, we 
estimated the composition of tumor cell states in all the 
3 glioma datasets. To better understand the composi-
tion of their malignant cell states we leveraged previ-
ously published single-cell resources along with their 
cell-annotations to derive the signature matrix. As pre-
viously established, the diverse malignant cells in IDH-
WT tumors have been described as converging to a 4 
cell-states: (AClike, MES-like, NPClike and OPClike) 
[44] while in case of IDH-MUT gliomas, 3 malignant 
cell-states have been proposed: Astro-like, Oligo-like and 
Stem-like [63]. Malignant cell-state proportions derived 
with these signatures were generated using CIBER-
SORTx and are depicted in Additional file 8: Figure S8A 
for IDH-WT and Additional file 8: Figure S8B for IDH-
MUT tumors, respectively. With the malignant cell state 
deconvolution, we examined the interplay between these 
malignant cell-states and immune cell-based (COCA) 
survival groups. Towards this end, we tested for the dis-
tribution of each of the cell states among each of the 
immune derived survival clusters and found in the case 
of IDH-WT tumors, the MES-like component was higher 
in poor surviving groups (as defined in Fig. 4) for all three 
datasets (Fig. 5A). To further characterize this finding, we 
built on results from several recent reports which have 
underlined the role of macrophages to induce MES-like 
cell-state by implicating macrophage-derived oncostatin 
M (OSM) with its receptors and activating STAT3 sign-
aling in glioma [24, 47, 66]. Along this line, we found 
a positive correlation for the proportion of MES-like 
state and estimated OSMR expression within M0 mac-
rophages (Fig. 5B), but not within M1 macrophages, M2 
macrophages or monocytes (Additional file  9: Figure 
S9), suggesting specificity within macrophage subtypes 
in a potential interaction with the MES-like malignant 
cell state. Moreover, the enrichment of an epithelial-
mesenchymal transition signature as well as STAT3 
signaling markers in poor-surviving groups further char-
acterize these results (Fig.  5D and E), suggesting a role 
of M0 macrophage abundance in the MES-like cell state 
in glioma. We also included in-house scRNA RNA seq 

(See figure on next page.)
Fig. 4 Tumor groups with distinct immune signatures based on selected cell types. A Heatmaps representing hierarchical clustering of the clusters 
identified from selected immune cell types from IDH‑WT tumors. The above annotation bars representing the distributions of cluster assignments, 
tumor grade, MGMT promoter methylation, EGFR expression, TERT expression (surrogating the status of TERT promoter mutation) and Chr7 gain & 
Chr10 loss followed by their Kaplan–Meier curves denoting their survival differences and B forest plots displaying prognostic association of these 
immune based clusters for IDH‑WT. Similarly, C heatmaps representing the hierarchical clustering of the clusters identified from selected immune 
cell types from IDH‑MUT tumors. The above annotation bars representing the distributions of cluster assignments, tumor grade and Chr1p/19q 
loss with Kaplan–Meier curves below the heatmap denoting their survival differences and D forest plots displaying prognostic association of these 
immune based clusters for IDH‑MUT tumors
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Fig. 4 (See legend on previous page.)
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data from 19 gliomas encompassing 10 IDH-WT and 9 
IDH-MUT tumors (Additional file  15: Table  S3). With 
this set of analysis, we were able to identify 18 distinct 
clusters (Additional file  10: Fig.  S10A and B), including 
the neoplastic and the immune cells (Additional file 10: 
Fig.  S10C, D and Additional file  15: Table  S3). These 
single cells derived cell types were then used to gener-
ate the signature matrix for deconvolution (Additional 
file  10: Fig.  S10E and Additional file  15: Table  S3). We 
also assessed the expression deconvolution data from 
macrophages and malignant cells and found a statisti-
cally significant correlation between the expressions of 
OSM and OSMR expressions from the macrophages and 
malignant cells respectively (Fig. 5C). This set of analysis 
support the connection between macrophages and MES-
like cells.

Additionally, we identified 368 MES-like corelating 
genes from M0 macrophages that were common in all 
3 datasets that, in turn, showed enrichment for mesen-
chymal pathways, including extracellular matrix organi-
zation and angiogenesis along with the immunological 
pathways (Additional file  11: Figure S11A). In contrast, 
95 genes from M2 macrophages which were common in 
all 3 datasets showed enrichment only for immunologi-
cal pathways (Additional file  11: Figure S11B). We next 
analyzed IDH-MUT tumors and interestingly in 1p/19q 
non-codeleted tumors (compared to co-deleted tumors) 
we observed a similar enrichment for genes from mesen-
chymal pathways in M0 macrophages with overlapping 
correlated genes compared to the M0 gene expression 
signatures in the MES-like state of IDH-WT glioma 
(Additional file 12: Figure S12).

Extension of findings to checkpoint inhibitor‑treated 
glioma patients
Next, we investigated infiltrating immune cell composi-
tions in a predominantly IDH-WT 29-sample dataset 
collected from patients treated with pembrolizumab 
[10]. To explore the role of tumor-microenvironment 
in response to immunotherapy, we relied on the LM10 
signatures comprising 10 broad immune cell types bet-
ter suited for smaller datasets than the LM22. Notably, 
LM10 broadly covers all types of monocyte-derived cells 
(including M0, M1 and M2 macrophages) in a single 

unit. As expected from LM10-based deconvolution, this 
dataset demonstrated enrichment of the monocyte cell 
fraction across all the patients analyzed (Fig. 6A) and the 
predicted malignant cell state proportions are shown in 
Fig. 6B. Interestingly a higher fraction of monocytes was 
significantly associated with a shorter overall survival 
(HR = 5.0, P < 0.001) (Fig. 6C), suggesting that cells with 
monocytic lineage may play a role on checkpoint inhib-
itor-related patient outcome in glioma. We also repeated 
the LM10 based deconvolution for TCGA and CGGA 
datasets and observed higher fraction of monocytes was 
significantly associated with patient survival only in case 
of CGGA693 but not in CGGA325 and TCGA tumors 
(Fig. 6D). Such an inconsistency among the non-immu-
notherapy treated samples compared to the checkpoint 
inhibitor-treated tumors suggest the predictive value of 
monocytes.

Unsupervised clustering of the checkpoint inhibitor-
samples based on monocytic expression-based clusters 
(as above) revealed two clusters with distinct survival 
outcome (Fig.  6E and F). We also found epithelial-mes-
enchymal transition (EMT) markers to be significantly 
enriched in the poor surviving group (Fig. 6G). We also 
observed a positive correlation between the epithelial-
mesenchymal transition and the T cell exhaustion scores 
both in patients treated with a checkpoint inhibitor, as 
well as larger cohorts (Fig.  6H). The finding of an asso-
ciation of epithelial-mesenchymal transition with T-cell 
exhaustion in glioma may be analogous to what has 
been reported in other cancer types [41]. These results 
together emphasize prognostic associations of mono-
cyte/macrophage lineage cells in gliomas in the context 
of patients treated with a checkpoint inhibitor, and link 
mesenchymal gene expression in monocytic lineage cells 
with a T-cell exhaustion score in gliomas overall.

Discussion
Emerging evidence has highlighted the critical involve-
ment of the immune microenvironment in tumor 
development and progression. These immune-related 
biomarkers may have a potential to predict patient out-
come and therapy responsiveness [2, 31, 54, 73], and 
thus, have inspired numerous microenvironment-
targeted therapies in multiple tumors [33, 34, 50]. In 

Fig. 5 Deconvolving malignant cell states and their interaction with immune based clusters. A Differential distributions of IDH‑WT specific 
malignant cell‑states between the two immune‑based survival groups are depicted by boxplots. B Scatter plots representing a positive correlation 
between the proportions of M0 macrophages and MES‑like component of IDH‑WT tumors across all 3 datasets. C Scatter plots representing a 
significant positive correlation between the expressions of OSM from macrophages and OSMR from malignant cells in IDH‑WT tumors identified 
by scRNA based deconvolution. D Boxplots depicting differential distribution of epithelial‑mesenchymal transition markers between the two 
immune‑based survival groups. Similarly, E boxplots depicting differential distribution of STAT3 signaling markers between the two immune‑based 
survival groups

(See figure on next page.)
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addition, various reports have discussed prognostic roles 
of immune related genes in gliomas, but the characteri-
zation of immune cell compartments has not been fully 
elucidated.

In this work, we explored the landscape of glioma infil-
trating immune cells using CIBERSORTx deconvolution 
as summarized in Fig.  1. We found M2 macrophages 
constitute a large portion of glioma microenvironment. 
Macrophages are a large component of many tumor 
types and have been an attractive target for glioblastoma 
therapy [21, 36, 40, 55]. Deconvolution of the tumor bulk 
transcriptomic data enabled us to investigate immune 
cell distributions in glioma and their clinical outcome 
correlated at a much greater resolution. We found that 
specifically M0 macrophages were enriched in IDH-WT 
gliomas while monocytes were relatively more abundant 
in IDH-MUT gliomas. Additionally, higher levels of M2 
macrophages were observed to be associated with poor 
prognosis. These differentially distributed monocyte/
macrophage lineage cells and their association with 
patient outcome further highlight their prognostic roles 
in tumor progression. Targeting these specific cells to 
inhibit their tumor-promoting effect and reprogramming 
them into an anti-tumor phenotype could be a potential 
therapeutic approach for glioma.

Gene expression profiling of all the deconvolved 
immune cell types resulted into sample groups segre-
gated by their IDH status, as discussed in Figs. 2 and 3. 
Further clustering of these sample groups resulted into 
distinct clusters which can predict patient outcome. 
These immune based clusters were broadly character-
ized by tumor grades, and in case of IDH-MUT tumors, 
also by their 1p/19q codeletion status. Based on WHO 
2021 classification and other previous reports has already 
established that Chr7 gain & Chr10 loss, TERT muta-
tion along with EGFR expression and MGMT promoter 
methylation are the strongest predictor of survival in 
glioblastomas [25, 35, 39]. Several reports suggest ele-
vated levels of ITGA4 denoting macrophage abundance 
can also predict poor prognosis in gliomas [6, 34, 56]. 
We also observed similar associations between the Chr7 
gain & Chr10 loss, expressions of EGFR, TERT (surrogat-
ing the status of TERT promoter mutation) and MGMT 

promoter methylation of the immune based clusters with 
the patient outcome (Fig. 4A and Additional file 5: Figure 
S5A). Similarly, the prognostic nature of these immune 
based clusters was also characterized by higher levels 
of ITGA4 expression as well as higher scores for cytol-
ytic and T cell exhaustion, as reported previously [22, 
51, 71] (Additional file 6: Figure S6), providing corrobo-
ration that CIBERSORTx-based deconvolution of the 
bulk datasets yields result that are consistent with prior 
investigations. These findings indicate that tumor micro-
environment plays a major role in characterizing tumor 
subtypes [29, 53, 59]. These identified sample groups 
may exhibit a distinct immune context, prognosis, and 
immunotherapy benefit, which supports the idea that the 
immune environment is of vital importance in predict-
ing patient prognosis and evaluating the response rate 
of checkpoint inhibitor immunotherapies. Later, clus-
ters derived from a few selected cell types that involve 
M0 and M2 macrophages along with B-mem, DC-activ 
and T-help, were able to identify tumor subgroups that 
can also predict patient outcome. This set of analysis 
again emphasizes the prognostic role of M0 and M2 mac-
rophages along with other immune cells. Further analy-
ses may facilitate more opportunities to investigate other 
immune cells playing important roles in complex tissues.

Recent advances in tumor biology have revealed 
interactions between the tumor cells and their adjacent 
microenvironment, highlighting the importance of TME 
and their involvement in tumor growth and the develop-
ment of metastasis [52, 62]. Towards this we extended 
our search by analyzing the proportion of malignant cell-
states by using a previously published single cell data and 
their labels to derive a new signature matrix [44, 63]. To 
study the interplay of malignant cell-states and immune 
cell-based clusters, we checked for the distribution of 
malignant-states among the immune based clusters. 
With this set of analysis, we found in IDH-WT, MES-
like component was found to be higher in poor surviving 
groups while in IDH-MUT, Oligo-like tumor cell-state 
was found to be higher in better surviving group (Addi-
tional file 7: Figure S7C). Based on recent literature, pro-
portion of TCGA-MES subtype can be correlated with 
macrophage abundance [24, 66]. On the similar note, in 

(See figure on next page.)
Fig. 6 Immunotherapy‑treated glioma datasets. A Stacked bar plots representing relative proportion of 10 broader category of immune cell types 
from LM10 across samples treated with checkpoint inhibitor. B Stacked bar plots representing the relative proportions of 4 malignant cell‑states 
across all immunotherapy treated samples. C Forest plot representing the association between their dichotomous immune cell fractions and 
their overall survival. D Monocyte‑based gene expression clusters represented by tSNE followed by E Kaplan–Meier curves denoting distinct 
survival between the two clusters. F Boxplots depicting differential distribution of epithelial‑mesenchymal transition markers between the two 
immune‑based survival groups derived from monocytes from samples treated with checkpoint inhibitor. G Scatter plots representing significant 
positive correlations between the epithelial‑mesenchymal transition and the T cell exhaustion scores both in patients treated with a checkpoint 
inhibitor, as well as larger cohorts. H Forest plot representing the insignificant or inconsistent association between their dichotomous monocytic 
fractions in non‑immunotherapy or non‑checkpoint inhibitor treated IDH‑WT tumors (from TCGA, CGGA325 and CGGA693) and their overall survival



Page 13 of 18Mehani et al. Acta Neuropathologica Communications           (2022) 10:19  

Fig. 6 (See legend on previous page.)



Page 14 of 18Mehani et al. Acta Neuropathologica Communications           (2022) 10:19 

IDH-WT we also found positive correlation between the 
M0 macrophages and MES-like proportions (r = 0.26, 
0.45, and 0.38 in TCGA, CGGA325, and CGGA693 
respectively in Fig. 5B) followed by enrichment for genes 
from mesenchymal pathways along with the immunolog-
ical pathways in M0 macrophages while M2 macrophages 

demonstrated the enrichment only for immunological 
pathways. Together these results highlight the specificity 
within macrophage subtypes in context to the MES-like 
cell state in gliomas, as described in Additional file 9: Fig-
ure S9 and summarized in Fig. 7A. Additionally, IDH mut 
tumor also harbor a similar enrichment for genes from 

Fig. 7 Enrichment for genes from mesenchymal pathways in M0 macrophages while M2 macrophages demonstrated the enrichment for 
immunological pathways in A IDH‑WT and B IDH‑MUT tumors
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mesenchymal pathways in M0 macrophages over other 
cell types when comparing 1p/19q non-codeleted tumors 
with codeleted tumors (in Fig. 7B and Additional file 10: 
Figure S10). A deeper understanding of interactions like 
this will help not only to explore the cancer growth and 
metastasis but also to elucidate the mechanisms of action 
of classical drugs that have been discovered by empirical 
approaches. Such studies may highlight the importance 
of deconvolution approaches that can facilitate designing 
and development of novel cancer drugs.

We expanded our analysis our findings in an inde-
pendent checkpoint inhibitor-treated glioma samples 
encompassing 29 high-grade glioma patients treated 
with pembrolizumab [10]. Here due to the small sample 
size we used LM10 signature matrix instead of LM22 for 
deconvolution, where monocytes are expected to encom-
pass all types of macrophages along with monocytes 
itself. Results showed monocytes were the most pre-
dominant cell type and can predict poor prognosis in this 
glioma samples treated with checkpoint inhibitor (Fig. 6). 
Further clustering of the deconvolved gene expression 
from monocytes resulted into poor and better surviving 
groups where epithelial-mesenchymal transition markers 
were found to be enriched in the poor surviving group. 
As monocytes and macrophages share their lineages [17], 
these findings are consistent with those observed from 
TCGA and CGGA datasets. These results underline the 
prognostic potential of monocyte/macrophage lineage 
cells in gliomas, including patients treated with a check-
point inhibitor.

Strengths of our study includes the use of clinically 
annotated genomically characterized glioma data, with 
the inclusion of 3 independent datasets, allowing the 
opportunity to examine reproducibility across cohorts. 
Our study has several limitations, which includes the use 
of the LM22 gene signature matrix, which was derived 
primary from cells in the blood and not from tumors. It 
is likely that variation in immune gene expression sig-
natures exist within solid tumors. In addition, the dis-
tinction of M0, M1 and M2 macrophages may not best 
delineate the function of these cells in gliomas. That said, 
a recent report indicates that the M0 (unpolarized) state 
may best represent the majority of macrophages in glio-
mas [16]. Thus, while the M0/M1/M2 signatures in the 
LM22-derived matrix may not best represent glioma 
biology, our result suggests, at minimum that a subset of 
macrophages exist that may play specific roles in glioma 
biology, including relationships with the MES-like state 
in IDH-WT GBM, as well as associations with 1p/19q 
co-deletion status in IDH-MUT glioma. An explanatory 
model summarizes these main interactions (Fig. 7). Based 
on these findings, future analyses will examine signature 
matrices derived from glioma single cell RNA sequencing 

data to further characterize the interplay of macrophages 
and tumor cell characteristics. Even with these limita-
tions, our findings suggest proof-of-principal to stimulate 
further and more detailed studies on the role of immune 
cell gene expression and biology in the clinical and bio-
logical aspects of both IDH-WT and IDH-MUT diffuse 
gliomas.

Conclusion
In conclusion, our analysis relies on a large sample set 
of gliomas to demonstrate immune cell gene expression 
signatures, derived by deconvolution with CIBERSORTx 
correlate with IDH mutation status in glioma and also 
with patient outcome within IDH-WT and IDH-MUT 
gliomas. The mesenchymal cell state in IDH-WT GBM 
showed association with M0 and M2 macrophages where 
it correlates with mesenchymal signatures in M0 mac-
rophages, and immune signatures in M2 macrophages. 
Together these results highlighted the prominent asso-
ciation of monocytic lineage cells, specially the M0 mac-
rophages, with MES-like state and the patient outcome 
thus provide insights for future investigation to better 
understand glioma biology and developing better immu-
notherapeutic approaches in gliomas.
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Additional file 1: Figure S1. Flowchart to represent the workflow fol‑
lowed in this study.

Additional file 2: Figure S2. A) Stacked bar plots representing the rela‑
tive proportion of 22 immune cell types across all IDH‑WT and IDH‑MUT 
samples, where each color indicates each cell‑type. B) Scatter plots 
representing a significant positive correlation between the proportion of 
macrophage M2 with number of segments or with fraction altered or with 
homologous recombination defects, where ‘‘fraction altered’’ represents 
the fraction of bases deviating from baseline ploidy (defined as above 0.1 
or below ‑0.1 in log2 relative copy number (CN) space), while ‘‘number of 
segments’’ represents total number of segments in each sample’s copy 
number profile. C) M2 macrophage‑based gene expression clusters repre‑
sented by tSNE, followed by D) bar‑plots showing IDH specific enrichment 
in each cluster, E) Kaplan–Meier curves denoting distinct survival between 
the clusters, and F) forest plots representing the survival differences cor‑
rected by IDH status, grade, and age.

Additional file 3: Figure S3. Gene expression clustering and the separa‑
tion between IDH‑MUT and IDH‑WT tumors. A) UMAPs denoting 10 inde‑
pendent gene expression clusters identified in all 3 datasets harboring a 
clear separation between IDH‑MUT (green) and IDH‑WT (orange) tumors. 
B) Bar‑plots showing IDH specific enrichment in each cluster, C) Kaplan–
Meier curves denoting distinct survival between the clusters, and D) forest 
plots representing the survival differences corrected by IDH status, grade, 
and age.

Additional file 4: Figure S4. Deconvolved M2 macrophages gene 
expression profiles in non‑glioma tumors. Unsupervised clustering of M2 
macrophages gene expression profiles. A) tSNE plot representing the 
samples colored by their cluster groups. B) Kaplan–Meier curves estimat‑
ing survival probability for each unsupervised cluster.
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Additional file 5: Figure S5. Tumor groups with distinct immune 
signatures based on LM22 clusters. Heatmaps representing the hierarchi‑
cal clustering of LM22 clusters. The above annotation bars representing 
the distributions of cluster assignments, tumor grade, MGMT promoter 
methylation, EGFR expression, TERT expression (surrogating the status of 
TERT promoter mutation) and Chr7 gain & Chr10 loss or Chr1p/19q loss 
with Kaplan–Meier curves below the heatmap denoting their survival 
differences between these immune‑based clusters for A) IDH‑WT and B) 
IDH‑MUT tumors.

Additional file 6: Figure S6. Forest plots displaying prognostic associa‑
tion of the clusters from selected cell types which were consistently 
significant in A) IDH‑WT tumors that involve i) M0 Macrophages, ii) M2 
macrophages, iii) Dendritic activated cells and iv) B memory cells. Simi‑
larly, forest plots representing the prognostic clusters from B) IDH‑MUT 
tumors which were significantly consistent across all datasets involving i) 
M0 Macrophages, ii) T helper and iii) B memory cells.

Additional file 7: Figure S7. Box plots demonstrating distribution of 
A) ITGA4 expression, B) cytolytic scores, and C) T cell exhaustion scores 
between the two immune‑based survival groups.

Additional file 8: Figure S8. A) Stacked bar plots representing the 
relative proportion of 4 malignant cell states across all IDH‑WT samples. 
B) Stacked bar plots representing the relative proportion of 3 malignant 
cell states in IDH‑MUT tumors. C) Dodged boxplots depicting differential 
representation of 3 IDH‑MUT specific malignant cell states between the 
two immune‑based survival groups derived from 3 datasets.

Additional file 9: Figure S9. Scatter plots representing the correlation 
between proportions of A) M1 macrophages, B) M2 macrophages, and 
C) monocytes with MES‑like component of all IDH‑WT tumors from each 
dataset.

Additional file 10: Figure S10. A) UMAP representing unsupervised 
clustering of 89,926 cells from 19 tumors revealed 18 distinct clusters. 
B) Color‑coded UMAP representing sample‑wise composition of each 
cluster. C) Copy number‑based identification of malignant cells and are 
marked in red and green. D) Color‑coded UMAP representing distinct 
cell types identified from. E) IDH‑WT tumors specific single cell derived 
signature matrix.

Additional file 11: Figure S11. Venn diagram demonstrating the number 
of MES‑like correlating genes from A) M0 macrophages and B) M2 
macrophages that were common in all 3 IDH‑WT datasets followed by 
significantly enriched overlapping pathways.

Additional file 12: Figure S12. Venn diagram highlighting the number 
of common genes upregulated in non‑codeleted tumors compared 
to 1p/19q codeleted IDH‑MUT tumors in all 3 datasets from A) M0 
macrophages, B) M2 macrophages and C) Tcell CD8 cells, followed by 
significantly enriched overlapping pathways.

Additional file 13: Table S1. Table listing abbreviations used for all 
the 22 cell types from LM22 and 10 cell types from LM10 utilized for 
deconvolution.

Additional file 14: Table S2. Table listing cluster memberships for each 
sample derived from cluster of cluster analysis of immune based clusters.

Additional file 15: Table S3. Table listing inhouse samples with scRNA 
Seq, with cell type annotation and scRNA derived signature matrix.
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